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Chapter 1

Thermodynamics and the Properties of
Gases

1.1 Introduction

Physical chemistry is the discipline that applies physical and mathematical methods to the
study of chemical phenomena. There are four main branches of physical chemistry:

• Thermodynamics deals with the measurable macroscopic properties (energy, pressure,
temperature,...) of systems and the relations between them. The application of
thermodynamic principles to the study of chemical reactions constitutes the field of
chemical thermodynamics.

• The interactions between atoms and between their constituent particles (nuclei, electrons)
are described by the laws of quantum mechanics. Quantum chemistry uses the laws of
quantum mechanics to study the microscopic properties of molecules and solids. A
particularly important and useful branch of quantum chemistry is spectroscopy, which
deals with the interaction between light and matter.

• The field of statistical thermodynamics allows the prediction of macroscopic
thermodynamic properties of systems from the microscopic behavior of its constituent
particles using statistical methods.

• Chemical kinetics studies the rates of chemical reactions, i.e., the velocity at which
they occur. Chemical kinetics can describe chemical reactions either macroscopically or
microscopically. The microscopic study of the molecular events involved in a chemical
reaction is the purview of the field known as reaction dynamics.

In this course, we will study classical thermodynamics, which deals with the description of
macroscopic systems at equilibrium and the relations between their properties. There are two
particularly important types of systems we will examine in detail: gases and solutions.
Classical thermodynamics is purely phenomenological, because its laws are postulated based on
experimental evidence, and macroscopic, because at no point is it necessary to invoke the
existence of atoms and molecules to develop the theory. In fact, classical thermodynamics
originated from the study of steam engines in the context of industrial revolution at the
beginning of the XIX century. As such, it predates the origin of physical chemistry and the
modern atomic theory by almost a century. Nevertheless, we will often employ microscopic
arguments to explain thermodynamic results in the light of our current understanding.
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Figure 1.1: The three types of thermodynamic systems: isolated (left), closed (middle), and open
(right).

1.2 Definitions

1.2.1 Systems and Walls

The following definitions will be used throughout the course. A thermodynamic system is
the part of the universe under study. The system can be small, like a flask where a chemical
reaction is taking place, or large, like an ocean or a planet. The only requirement imposed on
the system is that it needs to be macroscopic, that is, the number of atoms in the system must
be at least in the order of Avogadro’s number. The system contains one or more different
chemical species, known as its components.

The outside of the system is known as the surroundings. The system plus its surroundings is
the universe. System and surroundings interact via walls, which are the boundaries that
separate them. These walls can be real, like the glass sides of a beaker, or imaginary, like the
separation between a planet and the vacuum of space. Depending on the characteristics of the
walls, we distinguish the following types:

• A wall that allows matter to pass through is permeable. Otherwise, it is impermeable.
In systems containing several components, the walls may be permeable to some species
but not to others. For example, an osmosis membrane that lets the solvent of a solution
through but not the solute, or an ion-selective electrode, which only allows a specific
chemical species to pass through it. In these cases, the wall is semi-permeable.

• A rigid wall does not move when force is exerted on it by the system or its surroundings.
The opposite is a nonrigid or movable wall. A glass beaker has rigid walls, while a
piston in an internal combustion engine or the surface of a balloon are movable walls.

• A wall is adiabatic or thermally insulating if it does not allow the exchange of energy
in the form of heat between the system and its surroundings. Heat and temperature will
be defined later. For now, it is sufficient to say that heat is energy transferred due to a
difference in temperature between system and surroundings, and that temperature is a
measure of the average kinetic energy of the constituent particles in a system. If a wall
allows the transfer of heat, it is nonadiabatic (also, thermally conducting,
diathermal, or diathermic). Thermos and Dewar flasks have approximately adiabatic
walls.

The properties of the walls determine the type of system and its interaction with the
surroundings. We distinguish three types of systems:

• In an open system, matter and energy can be exchanged between the system and its
surroundings. A lake is an open system because it can exchange matter (e.g. rain) and
heat (e.g. absorb radiation from the sun) with its surroundings.

2
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• A closed system may exchange energy in the form of heat with its surroundings, but
not matter. A stoppered glass flask immersed in a water bath is a closed system.

• An isolated system is a particular case of closed system that exchanges neither energy
nor heat with its surroundings. A closed thermos is an approximately isolated system.

Diagrams for the three types of systems are shown in Figure 1.1.

1.2.2 Thermodynamic Properties

Each system has a number of observable thermodynamic properties, such as volume,
temperature, or pressure that are the object of study in classical thermodynamics. The set of
values for all thermodynamic properties of a system constitute its thermodynamic state.
Two systems with the same thermodynamic properties are said to be in the same state. It has
been determined experimentally that relations exist between the different thermodynamic
properties of a system such that only a subset of all thermodynamic properties are required to
completely determine its state. For instance, the state of a pure gas is determined by the
number of molecules, its temperature, and its pressure. The other thermodynamic properties
(volume, internal energy, etc.) can be written as functions of the thermodynamic state.
Consequently, these properties are said to be state functions. The thermodynamic variables
used to determine the thermodynamic state, temperature, pressure, and number of molecules in
this example, are known as state variables.

A list of basic thermodynamic properties follows; more will be defined in later chapters. In
general, the International System of Units (SI) will be used throughout the course, except for
those properties where the use of SI units is not common practice.

Volume. The volume (V ) of the system is the amount of space it occupies. The SI units for
volume are m3 but a common unit is the liter, 1L = 1 dm3 = 1× 10−3m3.

Composition. The composition of a system is the amount of each component (i) inside it.
The composition can be given in terms of the mass of each component (mi) or in terms of the
amount of component (ni). The SI unit for mass is the kilogram (kg). The amount of
substance refers to the number of constituent entities (atoms, molecules, or unit formulas) and
its SI unit is the mole (mol).

One mole is the amount of matter that has a number of microscopic entities (atoms,
molecules, unit formulas) equal to the number of atoms in a sample of exactly 12 g of 12C. This
number has been determined experimentally with great precision, and is known as Avogadro’s
constant (NA):

NA = 6.022 140 76× 1023mol−1 (1.1)

Note that Avogadro’s constant has units of mol−1, because the number count is adimensional.

Closely related to the definition of mole is the concept of relative atomic (molecular) mass,
also known as the atomic (molecular) weight, which is an adimensional quantity equal the
ratio between the mass of an atom or molecule and 1/12 of the mass of a 12C atom. Typical
macroscopic samples contain different isotopes of the same atom, and therefore the relative
atomic/molecular masses are usually given as an average over this isotopic distribution. For
instance, the standard atomic weight of Cl is 35.45 because there are two main isotopes of
chlorine, 35Cl and 37Cl with approximately 3:1 abundance.

Two related concepts are those of atomic (molecular) mass and molar mass. The atomic
(molecular) mass is the mass of a single atom or molecule. A common unit for this quantity
is the dalton (Da) (also known as an atomic mass unit, amu) which is defined as 1/12 of the
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mass of a 12C atom, 1Da = 1.660 539 066 60× 10−27 kg. The molar mass (M) is the mass of a
mole of substance. The SI units for molar mass are kg/mol but g/mol is much more commonly
used. As a consequence of these three definitions, the numerical value of the atomic (molecular)
mass in Da is equal to the value of the molar mass in g/mol and is also equal to the relative
atomic (molecular) weight.

Example. The relative molecular weight of benzene is:

Mr = 6× 12.0107 + 6× 1.00794 = 78.11184

Note how the relative atomic weight of carbon is not exactly 12 because it is an average over its
isotopes, of which 12C and 13C are the most abundant. The molecular mass of benzene is the mass
of a single benzene molecule. Since the mass of a benzene molecule is Mr times 1/12 the mass of a
12C atom and the latter is exactly 1Da, we have:

mC6H6 = 78.111 84Da× 1.660 539 1× 10−27 kg

1Da
= 1.297 078× 10−25 kg

The molar mass is the mass of one mole of benzene molecules. One mole of 12C weighs exactly 12 g
and a benzene molecule is Mr/12 times heavier than a 12C atom. Therefore, the molar mass of
benzene is:

MC6H6 = 78.111 84 g/mol

The amount a given substance can be calculated as the ratio between its mass and its molar
mass:

n =
m

M
(1.2)

The amount is almost always measured in moles, hence n is commonly referred to as the
“number of moles” of that substance. If the amount is n, then the number of molecules (or
atoms or formula units), N , can be calculated by multiplying by Avogadro’s constant:

N = nNA (1.3)

Concentration and Density. The molar concentration or molarity (c) is the amount of
substance divided by the volume of the system:

c =
n

V
(1.4)

The SI unit for molar concentration is 1mol/m3 but the far more commonly used unit is the
molar, 1M = 1mol/L. Alternatively, the number concentration (C) is the number of atoms
or molecules divided by the volume:

C =
N

V
=

nNA

V
= cNA (1.5)

It has units of inverse volume (m−3 in the SI). The density (ρ) of a pure substance is its mass
divided by its volume:

ρ =
m

V
=

nM

V
= cM (1.6)

The SI units of density are kg/m3 although g/cm3 are commonly used.

Pressure. Pressure is defined as the force (F ) exerted on the walls of the system per unit
area (A):

p =
F

A
(1.7)
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Figure 1.2: Top: mechanical equilibrium conditions. Bottom: thermal equilibrium conditions.

Microscopically, pressure arises from the random collisions of the particles within the system
with its walls. These collisions are so frequent that a steady force is perceived. The higher the
energy of the molecular collisions and the more numerous they are, the higher the pressure.

The SI unit of pressure is the pascal (1Pa = 1N/m2). One pascal is a relatively small pressure,
so other units are in common use. These include the bar (1 bar = 1× 105 Pa), the atmosphere
(approximately equal to the average atmospheric pressure at sea level, 1 atm = 101 325Pa), the
millimeter of mercury or torricelli (the pressure exerted by a column of mercury 1mm high,
1mmHg = 1 torr = 133.322Pa), and the psi (pounds per square inch, 1 atm = 14.7 psi).
Atmospheric pressure is experimentally determined using a barometer.

Because the walls separate the system from the surroundings, we can distinguish between the
system’s pressure (p), exerted by the system, and the external pressure (pext), exerted by the
surroundings. If we put two systems with pressures p1 and p2 in contact via a nonrigid wall,
the wall moves depending on the values of the two pressures. The system with lower pressure is
compressed and the system with higher pressure expands, as indicated in Figure 1.2 (top).
When the two pressures equalize (p1 = p2), the systems achieve mechanical equilibrium and the
wall stops moving. In general, a system is said to be in mechanical equilibrium if there are
no unbalanced internal or external forces acting on the system. The pressure inside a system
can be measured experimentally with a manometer, which is a device that responds to
changes in pressure. A manometer is used by putting it in contact with the system under study
through a movable wall and then waiting until the two achieve mechanical equilibrium. The
numerical value for the pressure is read from the manometer’s gauge, which responds to the
pressure inside the device.

Temperature. By our previous discussion, pressure can be understood as an indicator of the
way in which two systems in contact via a movable wall evolve, and a quantitative measure of
how far they are from mechanical equilibrium. Similarly, temperature is the thermodynamic
property that determines the direction of the flow of energy between two systems in contact via
a rigid, impermeable, thermally conducting wall. The energy transferred as a consequence of a
temperature difference is known as heat. Energy flows from the hotter system to the colder
system until the temperature in both equalizes, at which point thermal equilibrium is
achieved (see diagram in Figure 1.2).

Microscopically, temperature is a measure of the average kinetic energy of the molecules in the

5
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system. The higher the temperature, the faster the molecules are moving on average. Because
temperature is a statistical property arising from the average over many molecules, it can only
be be defined for macroscopic systems.

The device used to quantify temperature is called a thermometer. A thermometer consists of
a system in which one of its measurable thermodynamic properties has a one-to-one
correspondence with its temperature. For instance, a common household thermometer is a bulb
containing mercury, a substance whose volume (Vt) depends approximately linearly on its
temperature. (Not all substances do this. Water, for instance, has a minimum in the
volume-temperature curve at around 4 ◦C.) When a mercury thermometer is brought into
contact with a system and both are allowed to reach thermal equilibrium, the temperature (θ)
in the system can be read from the volume occupied by the mercury in the bulb (Vt):

θ = aVt + b (1.8)

where the a and b constants are determined by assigning an arbitrary value of 0 to the
temperature of pure ice in contact with liquid water (the ice point) and a value of 100 to steam
in contact with liquid water (the steam point), both at 1 atm. This is the Celsius
temperature scale, and its unit is the degree Celsius (◦C).

The Celsius temperature scale has two drawbacks. First, it is tied to the properties of a
particular substance (mercury, in this case). Second, it is known experimentally that there is a
lower limit to the temperature scale (called absolute zero), and the Celsius scale assigns an
arbitrary non-zero value to that temperature, which makes the thermodynamic equations we
will see awkward to write. The thermodynamic temperature (T ) is an absolute
temperature scale with a value of T = 0 at absolute zero. The SI units for the thermodynamic
temperature (the Kelvin scale) are the kelvin (K), and they are defined such that one K is
exactly the same size as one degree Celsius. Specifically, a value of 273.16K is assigned to the
triple point of water (the unique temperature at which ice, steam, and liquid water coexist),
which makes the conversion between kelvin and degrees Celsius particularly simple:

θ/◦C = T/K− 273.15 (1.9)

The definition of the thermodynamic temperature can be done via the properties of ideal gases
(ideal gases tend to T = 0 when V → 0 regardless of pressure and the nature of the gas, see
Figure 1.3) or, more generally, using the properties of reversible heat engines, which we will
study later. Unlike the Celsius scale, the thermodynamic temperature scale has fundamental
significance, since T is directly proportional to the average kinetic energy of the constituent
particles in a system.

1.2.3 Equilibrium

An isolated system is in thermodynamic equilibrium if its macroscopic properties do not
change with time. A non-isolated system (open or closed) is in equilibrium if a) its properties
do not change with time and b) insulating the system, i.e. removing it from contact with its
surroundings, results in a system that is also at equilibrium. A non-isolated system for which
condition (a) holds (its properties are constant in time) but condition (b) does not hold is in a
steady state. An example of a system in steady state is a metal bar in contact with a hot
object on one end and a cold object on the other. This system is not at equilibrium because,
even though the temperature at each point along the bar does not change with time, if we
remove the bar from its surroundings, then the temperature will change.

There are three different types of equilibrium, two of which have already been mentioned:
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Figure 1.3: Volume-temperature curves for an ideal gas at three different (constant) pressures. The
three curves are extrapolated to the same temperature at zero volume, the absolute zero (−273.15 ◦C).

• Mechanical equilibrium. There are no unbalanced internal or external forces acting on
the system. If connected via a movable wall with its surroundings, the pressure in the
system equals the external pressure (p = pext). A system in mechanical equilibrium is
guaranteed to have a well-defined constant pressure throughout.

• Thermal equilibrium. There is no flow of heat within parts the system or between the
system and its surroundings. If connected via a diathermal wall with its surroundings,
the temperature of the system must equal the temperature of the surroundings
(T = Text). A system in thermal equilibrium is guaranteed to have a well-defined
constant temperature throughout.

• Material equilibrium. There are no chemical reactions or transfer of mass between
parts of the system or between the system and its surroundings. A system in material
equilibrium is guaranteed to have a well-defined constant composition in each of its
phases.

For thermodynamic equilibrium to occur, these three types of equilibrium must happen at the
same time.

1.2.4 Intensive and Extensive Properties

Thermodynamic properties can be classified as extensive and intensive. Extensive properties
are those whose value is proportional to the size of the system. For an extensive property, if we
take a system at equilibrium and separate it into parts, the value of the property in the system
equals the sum of the same property in all its parts. Volume and mass are extensive properties.

An intensive property is one whose value does not depend on the size of the system. If an
intensive property has a value that is uniform throughout the system and we separate the
system in parts, each part has the same value for this property as the whole system. Examples
of intensive properties are density, pressure, and temperature.

A system at equilibrium that has constant intensive properties throughout is homogeneous.
A system that is not homogeneous is heterogeneous, and may consist of several homogeneous
parts, each with different intensive properties. These homogeneous parts are known as phases,
and they need not be physically connected; a single phase can be dispersed throughout the
system. The aggregation state of a phase is described using standard abbreviations (s = solid, l
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Table 1.1: Names used for colloidal systems and a few examples.

Dispersed Continuous Name Example
Solid Liquid, solid Sol Ink, blood
Solid, liquid Gas Aerosol Smoke, fog
Gas Liquid, solid Foam Whipped cream, pumice
Liquid Liquid Emulsion Milk, mayonnaise
Solid Liquid Gel Agar, gelatin, silica gel

= liquid, g = gas). For instance, in the reaction:

2 H2(g) + O2(g) 2 H2O(l) (1.10)

the subscripts indicate that H2 and O2 are gases and H2O is a liquid. Species in aqueous
solution are denoted with the subscript aq.

Examples: A pure crystalline solid, a mixture of gases, and two perfectly mixed liquids are single-
phase systems because they have uniform intensive properties throughout their extent. A mixture of
immiscible liquids like oil and water has two phases because the oil and water phases are homogeneous
but have different densities and compositions. Ice in contact with liquid water at 0 ◦C has two
phases because ice and liquid have different intensive properties (for instance, different densities).
A solution of salt in water is a single phase but a dispersion has two phases even if the dispersed
phase is microscopic and is not observable to the naked eye (for instance, milk).

Alloys such as bronze (copper and tin) and brass (copper and zinc) are substitutional alloys, meaning
that the atoms of one component can replace the atoms of the other component in the crystal
structure. Since the intensive properties of a substitutional alloy are the same throughout its extent,
bronze and brass are single-phase systems. The components of steel (iron and carbon) form a
homogeneous solid solution at high temperature known as austenite. When cooled slowly, steel
differentiates into a microscopic mixture of pure iron (ferrite) and Fe3C (cementite). Therefore,
steel is a single-phase system at high temperature and a two-phase system at low temperature.

A particularly important instance of heterogeneous systems are colloidal systems, which are
composed of microscopic particles at most 1000 nm in diameter (the dispersed phase)
dispersed in a medium (the dispersion medium or continuous phase). Colloidal systems
receive different names based on the states of aggregation of the continuous and the dispersed
phases. Some common terms and examples are given in Table 1.1. Since there is a very large
interface between the two phases in colloidal systems, the contribution of the interface to the
thermodynamic properties of a colloidal system (the surface effects) is not negligible.

Colloidal systems are techonologically very important. A simple example of a colloidal
phenomenon is the detergent effect of soap. Soap is composed of salts of long-chain carboxylic
acids. When soap is dissolved in water, the concentration of these charged long-chain molecules
in solution increases. Once their concentration is higher than the critical micelle
concentration they self-assemble into globular shapes known as micelles. The hydrophobic
chains face the inside of the micelles and keep away from the water. The formation of micelles
is responsible for the detergent properties of soap, since these structures can trap other
hydrophobic substances (like oil) inside. Oil in soapy water is an example of an emulsion
(Table 1.1). In this case, we say the soap acts as emulsifying agent by decreasing the surface
tension of the oil/water interface.

1.3 Ideal gases

The ideal gas is an important theoretical model whose simple properties stem from the
assumption that the gas molecules are not interacting with each other. Even though it is an
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idealization, the ideal gas is a reasonably good approximation to the behavior of real gases at
low pressure.

Consider a closed system containing a pure gas, with thermodynamic properties n, V , p, and
T . Experimentally, it has been determined that these variables are related to each other such
that fixing three of them determines the fourth. Therefore, there is a function that links the
values of these four variables:

f(V, p, T, n) = 0 (1.11)

This relation is known as the equation of state of the system and it can be variously written
by solving for either of the variables: V (n, p, T ), p(n, V, T ), etc.

Let us assume that we solve the volume as a function of the other properties. Since the volume
is an extensive property, it is directly proportional to the total amount of gas:

V = n× g(p, T ) (1.12)

and we define the molar volume of a pure substance as:

Vm =
V

n
(1.13)

with SI units m3/mol. With this change, the equation of state simplifies to:

Vm = g(p, T ) (1.14)

The molar volume is an intensive quantity because it is a function of the intensive quantities p
and T .

The properties of gases were thoroughly studied experimentally in the XVII and XVIII
centuries. Three approximate laws governing the behavior of gases are important for us:

pV = constant, at fixed T, n (Boyle’s law) (1.15)
V = constant × T, at fixed p, n (Charles’ law) (1.16)
V = constant × n, at fixed p, T (Avogadro’s principle) (1.17)

Note that Avogadro’s principle implies that the volume of a gas is proportional to the amount
of matter, regardless of the nature of the constituent molecules. In other words, the g(p, T )
function in Eq. 1.12 is the same for all substances. These observations are exactly correct only
in the zero-pressure limit (p → 0) and so they constitute examples of limiting laws. The three
results can be combined into a single equation:

pV = nRT (1.18)

where R is the (molar) gas constant (R = 8.314 462 618 JK−1mol−1). An ideal gas is a
system that follows Eq. 1.18 under all conditions of volume, pressure, and temperature.
Eq. 1.18 itself is known as the ideal gas equation of state or the ideal gas law.

A gas that is not ideal is a real gas and only obeys the ideal equation of state exactly in the
zero-pressure limit. Nonetheless, the ideal gas law is a good approximation for the behavior of
real gases at low pressure. From the microscopic point of view, an ideal gas is characterized by
the fact that its molecules do not interact with each other, and each molecule behaves as if it
were alone in the system. Note that ideal gases obey the same law regardless of the chemical
nature of its component molecules. In particular, a mole of ideal gas always occupies 24.8L at
the standard ambient temperature and pressure (SATP, 298.15K and 1 bar) and 22.4L
at the standard temperature and pressure (STP, an earlier version of the standard
conditions, 0 ◦C and 1 bar), independently of the the chemical identity of the gas molecules.
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1.4 Mixtures of gases

The system is a mixture if it has more than one component. The composition of a mixture is
determined by the amount of each component ni, and the total amount is:

n = n1 + n2 + . . . (1.19)

In a mixture, it is useful to define the mole fraction of component i as the amount of i
divided by the total amount:

xi =
ni

n
(1.20)

Alternatively, the mass fraction (or weight fraction) is occasionally used:

wi =
mi

m
=

mi

m1 +m2 + . . .
(1.21)

Both the mole fraction and the mass fraction are adimensional and, by definition, the sum of
all mole fractions is equal to one:

x1 + x2 + . . . = 1 (1.22)

If the mixture is composed of gases, the partial pressure of component i (pi) is defined as:

pi = pxi (1.23)

where p is the total pressure of the mixture. If the mixture behaves ideally, then:

pi = pxi =
nRT

V
× ni

n
=

niRT

V
(1.24)

Therefore, in an ideal gas mixture, the partial pressure of a component is equal to the pressure
that component would have if it were alone in the container. This is Dalton’s law. Dalton’s
law is only exact if the gas mixture behaves ideally, but partial pressures can still be defined for
real gas mixtures.

1.5 Real gases

1.5.1 Experimental Behavior

In real gases, the interactions between molecules cause deviations from the ideal gas law
(Eq. 1.18). A good approximation to the potential energy of intermolecular interactions in a
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gas is the Lennard-Jones potential:

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(1.25)

which is represented in Figure 1.4. As shown in the figure, the Lennard-Jones potential has two
regimes of interaction, depending on distance. At long intermolecular distances, the molecules
attract each other, and this attraction is relatively weak. At short range, the molecules repel
each other very strongly because of the overlap between their electron clouds. In the limit of
infinite separation, the energy of the interaction tends to zero. The ideal gas law is exact when
there are no interactions between molecules. Therefore, the ideal gas law is exact in the limit of
zero pressure, when the average intermolecular distances in the gas are much greater than the
molecular diameters.

Figure 1.5 represents the experimental constant-temperature p(V ) curves, known as
isotherms, for a real gas (carbon dioxide). In an ideal gas, the isotherms are hyperbolas under
any conditions:

p = nRT × 1

V
(1.26)

and are shown in the diagram as dotted lines. At high volume, the experimental CO2 isotherms
resemble hyperbolas like in the ideal gas, because the molecules are relatively far apart and the
intermolecular interactions are negligible. At lower volumes, the molecules of the gas are forced
closer to each other and the behavior of the gas deviates from ideality until ultimately the gas
condenses into a liquid. The liquid phase of CO2 is represented by the left-hand side of the
diagram in Figure 1.5, and the area under the dashed line represents the zone where CO2
transitions from gas to liquid.

Consider the experimental 21.5 ◦C isotherm of CO2 in Figure 1.5. Point A has relatively low
pressure (high volume) and the behavior of CO2 at this point is similar to an ideal gas. As the
gas is isothermally compressed, the point moves to the left until point B is reached. At B,
liquid CO2 starts condensing and any further decrease in volume results in an increase in the
amount of condensed liquid but does not change the pressure. At point C, all CO2 has been
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condensed into a liquid. The rest of the curve is the compression isotherm of liquid CO2. Since
liquids are relatively incompressible compared to gases, a further decrease in volume results in
a very large increase in pressure (point D).

All isotherms with temperatures below that of point E, which is an inflection point of the
corresponding isotherm, show the behavior just described. For temperatures above point E,
compression of the gas does not result in the condensation of a liquid. The temperature of
point E is known as the critical temperature (Tc), and the pressure and molar volume
associated with this point (known as the critical point) are the critical pressure (pc) and
the critical (molar) volume (Vc). These values are unique for each gas. For instance, in
CO2, pc = 72.9 atm, Vc = 94.0 cm3/mol, and Tc = 304.2K. In general, the critical temperature
is defined as the temperature above which it is not possible to condense a gas by compression.
Above the critical temperature, the distinction between gas and liquid disappears, and the
phase is referred to as a supercritical fluid.

1.5.2 The Virial Equation of State

The deviation of a real gas from ideality can be measured using the compression factor (or
compressibility factor, Z):

Z =
Vm

V id
m

=
p

pid =
pVm

RT
(1.27)

where Vm is the molar volume of the real gas, V id
m is the molar volume of the equivalent ideal

gas under the same conditions, p is the pressure, and pid is the pressure of the equivalent ideal
gas under the same conditions. For an ideal gas, Z = 1 always. In a real gas, Z is a state
function and depends on the state variables (for instance, on temperature and pressure,
Z(T, p)).

The compression factor of a few real gases is shown in Figure 1.6. As expected, all gases tend
to the ideal compression factor (Z = 1) at low pressure. For most gases, including those shown
in the figure, Z < 1 at low pressure and then the compression factor increases above one at
higher pressure. This can be explained by the interactions that dominate in each of those
ranges. At moderately low pressure, the molecules interact with each other but are not forced
into close proximity, so attraction dominates and the volume of the real gas is lower than the
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ideal gas, and therefore Z < 1. At higher pressures, molecules are brought closer together and
intermolecular repulsion dominates, the volume of the real gas is higher than the ideal gas and
Z > 1.

Since even for real gases Z is close to one at moderate pressures, one way of modeling the
equation of state of a real gas is to perform a Taylor expansion of Z around p = 0. Using the
the inverse molar volume as the expansion variable results in:

Z = 1 +
B

Vm
+

C

V 2
m

+ . . . (1.28)

or:
pVm = RT

(
1 +

B

Vm
+

C

V 2
m

+ . . .

)
(1.29)

which is the virial equation of state. The coefficients B(T ), C(T ), etc. are the second, third,
etc. virial coefficients. They depend only on temperature and they can be determined from
experimental measurements of the compressibility factor at various pressures. For instance, the
second virial coefficient B of various real gases is: −149.7 cm3/mol (CO2), −10.5 cm3/mol (N2),
and −21.7 cm3/mol (Ar). Alternative forms of the virial equation of state can be written
depending which variable we use for the Taylor expansion. For instance, using pressure as the
expansion variable results in:

pVm = RT
(
1 +B†(T )p+ C†(T )p2 + . . .

)
(1.30)

The B†, C†,etc. coefficients are related to B, C, etc. and one set of coefficients can be
calculated from the other.

1.5.3 The Van der Waals Equation of State

An extension of the ideal gas law for real gases can be derived using simple arguments. The
molecules in an ideal gas are non-interacting. If the molecules in a gas interact, we expect two
effects on the volume and pressure of the gas. First, molecules have a finite size, so they occupy
a certain volume from which the other molecules are excluded. Therefore, instead of using V as
the gas volume, we use:

V − nb (1.31)

where b is a parameter related to the molecular size and to the strength of the intermolecular
repulsion.

Molecules also attract each other at moderately long distances. This attraction reduces both
the frequency and the kinetic energy of the molecular collisions with the system walls, each by
an amount proportional to the molar concentration (n/V ). Therefore, the pressure is reduced
by:

a
( n
V

)2
(1.32)

where a is another empirical parameter related to the strength of the intermolecular attraction.
Putting both results together leads to the van der Waals equation of state:

p =
nRT

V − nb
− a

n2

V 2
=

RT

Vm − b
− a

V 2
m

(1.33)

The values of a and b are particular for each gas, and can be determined from experiment. For
instance, for CO2, they are a = 3.610 atmL2mol−2 and b = 4.29× 10−2 Lmol−1.

Figure 1.7 shows the isotherms at several temperatures for the van der Waals gas. Compare
these curves to the experimental and ideal-gas isotherms in Figure 1.5. Clearly, the van der
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Waals equation of state is in much better agreement with experiment than the ideal gas law.
However, the behavior of the van der Waals gas in the region of the diagram corresponding to
the phase transition between gas and liquid is unphysical. The inversion in the slope of the van
der Waals curves below the critical temperature (Tc, indicated as a point in the diagram)
means that the van der Waals equation predicts states where a decrease in volume at constant
temperature leads to a decrease in pressure, something that is not possible.

These spurious features of the van der Waals equation originate from the fact that, if expanded,
this equation of state predicts that the pressure is a cubic polynomial in the molar volume.
Therefore, for a given pressure and temperature below the critical temperature, this polynomial
has three real roots and, therefore, the van der Waals equation of state predicts three possible
different volumes for a given pressure and temperature. This unphysical behavior causes the
oscillating features shown in Figure 1.7, known as the van der Waals loops. A reasonable

Figure 1.8: An example of Maxwell’s equal-area construction. The van der Waals isotherm has spurious
behavior, sketched as dotted lines, in the liquid-gas transition part of the p-V diagram. The van der Waals
isotherm is replaced by a straight line in such a way that the area between this line and the isotherm is
equal above and below the line.
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agreement with experiment can be recovered by replacing these regions with a straight line that
covers the zone where the unphysical behavior is located. As we shall see, the most principled
way of drawing this straight line is such that the areas under and above the straight line are
equal, as shown in Figure 1.8. This is known as the Maxwell’s equal-area construction,
and it will be justified later.

The van der Waals equation of state does not capture the behavior of real gases very accurately,
and therefore it is not used very much in practice. If we restrict ourselves to describing a real
gas with two parameters, the Redlich-Kwong equation of state is a much better alternative:

p =
RT

Vm − b
− a

Vm(Vm + b)T 1/2
(1.34)

where a and b are empirical parameters for each particular gas, with values different from those
for the van der Waals equation. Note the Redlich-Kwong is also a cubic polynomial in the
volume so it has the same spurious behavior as the van der Waals equation of state in the
liquid-gas transition region. Many empirical equations of state for real gases exist, and they are
very important in engineering applications in which gases are often subjected to significant
pressure under working conditions. More sophisticated equations of state with more adjustable
parameters are used in practice.

1.5.4 The Principle of Corresponding States

The location of the critical point predicted by the van der Waals equation of state (Eq. 1.33)
can be calculated using the fact that the critical point is an inflection point of the p(V ) curve.
Therefore, the first and second derivatives of the p(V ) curve at the critical point must be zero:

pc =
RTc

Vc − b
− a

V 2
c

(1.35)

dp

dVm
= − RTc

(Vc − b)2
+

2a

V 3
c

= 0 (1.36)

d2p

dV 2
m

=
2RTc

(Vc − b)3
− 6a

V 4
c

= 0 (1.37)

or:
RTc

(Vc − b)2
=

2a

V 3
c

(1.38)

2RTc

(Vc − b)3
=

6a

V 4
c

(1.39)

Taking the quotient of both equations and solving for Vc yields:

Vc = 3b (1.40)

and substitution of this value into the equations above gives the other two critical properties:

Tc =
8a

27Rb
(1.41)

pc =
a

27b2
(1.42)

These expressions provide a way of determining the van der Waals parameters of a real gas
from experimentally measured critical constants.

We now define the reduced variables as the ratio between a variable and the corresponding
critical variable:

Tr =
T

Tc
pr =

p

pc
Vr =

V

Vc
(1.43)
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Figure 1.9: Compression factor (Z) of several gases as a function of reduced pressure at various
temperatures. All gases have similar compression factors in terms of the reduced pressure. Used with
permission from G.-J. Su, “Modified law of corresponding states for real gases”, Ind. Eng. Chem. 38 803
(1946).

If we substitute the temperature, pressure, and volume with the corresponding reduced and
critical variables in the van der Waals equation of state (Eq. 1.33), we have:

prpc =
RTrTc

VrVc − b
− a

V 2
r V

2
c

(1.44)

And if we apply the formulas we just found for the critical variables:

apr
27b2

=
8aRTr

27Rb(3bVr − b)
− a

9b2V 2
r

(1.45)

Multiplying both sides by 27b2/a, we arrive at:

pr =
8Tr

3Vr − 1
− 3

V 2
r

(1.46)

Since only the van der Waals coefficients a and b depend on the particular gas under study,
Eq. 1.46 must apply to any gas regardless of its chemical nature.

This result is not restricted to van der Waals gases and, in fact, the observation that the
equation of state when expressed in terms of reduced variables:

pr = f(Tr, Vr) (1.47)

is approximately the same for all real gases is known as the principle of corresponding
states. This principle is only an approximation, and it fails for non-spherical or very polar
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molecules. However for non-polar small molecules the principle of corresponding states is
remarkably successful. For instance, Figure 1.9 shows the experimentally determined
compression factor as a function of reduced pressure for several gases (N2, CO2, water, and a
number of small hydrocarbons). The value of Z in terms of pr and Tr is approximately the
same for all of them.

17



Chapter 2

The First Law of Thermodynamics

2.1 Heat, Work, and Energy

Energy, heat, and work are related quantities that are important in classical thermodynamics.
Work has the same definition as in classical mechanics. When a force applied on a body (F )
causes an infinitesimal displacement (ds), the work exerted is calculated as:

dw = F · ds (2.1)

where · symbolizes the scalar product between the force (F ) and the displacement vectors (ds).
If the body moves along a trajectory C given by the curve s(t) between times t0 and t1, the
work is calculated by integration of the equation above along the trajectory:

w =

∫
C
F · ds =

∫ t1

t0

F (s(t)) · ds(t)
dt

dt (2.2)

Example. We want to lift a box that weighs m = 1kg to a height h = 1m from the ground.
The gravitational force on the box is approximately constant and equal to F = mg, where g is the
gravitational acceleration. The required work is:

w =

∫
C

F · ds = mg

∫
C

ds = mgh = 1kg × 9.81m/s2 × 1m = 9.81 J

Note that work has units of energy and, in fact, the energy required to lift the box equals its gain
in potential energy (mgh).

In a thermodynamic system, work is done when an external force of any nature (mechanical,
electrical, magnetic,...) causes a displacement in the system or in a part of it. For example, if
the system consists of a gas chamber fitted with a piston, work can be exerted on the system
by applying external pressure on the piston and compressing the gas. Work can also be done by
the system on its surroundings. For instance, a battery is a thermodynamic system in which a
chemical reaction is taking place that involves the transfer of electrons between reactants. The
electric current generated by the battery is used to power devices outside the system.
Therefore, the battery is exerting work on the surroundings.

Energy is the capacity to do work. When a gas is compressed in a cylinder, or a battery is
recharged by running its electron-transfer reaction in reverse, or the mainspring of a clockwork
mechanism is wound up, the energy of the system increases and, as a result, it can exert more
work on its surroundings. Conversely, when the system does work on its surroundings, it loses
energy. Quantitatively, if a system makes a body in its surroundings move against an external
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force F , the energy the body gains as a result of this work is the same as the energy lost by the
system, and both are given by Eq. 2.1 but have opposite signs:

dwsystem = −dwsurr = F · ds (2.3)

In the following, we will always adopt the convention that energy gained by the system is
positive and energy lost by the system is negative.

The energy of the particles (atoms and molecules) inside the system can be of two kinds:
kinetic and potential. The kinetic energy (T ) of a particle is associated with the velocity
with which the particle moves:

T =
1

2
mv2 =

p2

2m
(2.4)

where p = mv is the particle’s momentum. The potential energy (V ) of a particle results
from its position in the system relative to other particles and any fields external to the system.
For instance, a body with mass m at a height h from the Earth’s surface has potential energy
equal to mgh, where g is the gravitational acceleration. Two charges q1 and q2 a distance r
apart have potential energy equal to q1q2/(4πϵr), where ϵ is the permittivity of the medium.
As we have seen in the example above, the potential energy of a body equals the work required
to move it to its current position, assuming no energy is lost in the process. The total energy
(or simply the energy) of a particle is the sum of its kinetic and potential energies:

E = T + V (2.5)

Provided no external forces act on the particle, E remains constant, although T and V
individually may vary.

The total energy of a system is the sum of the kinetic and potential energies of its particles.
Experimentally, it is known that the energy of a system can be changed by means other than
work. Specifically, the energy of a system may be changed as a consequence of a temperature
difference with its surroundings. As we have seen, energy transferred in this way is known as
heat (q). From the microscopic point of view, heat is the transfer of energy via random
molecular motions, since temperature is related to the average kinetic energy of the particles in
a system. When two systems with different temperatures are put in contact, the molecules in
the hotter system impact the slower molecules in the colder system, resulting in an energy
transfer. This contrasts with the energy transferred as work, where there is an organized
motion in the surroundings causing the application of an external force on the system.

Heat, work and energy all have the same units. In the SI, the unit of energy is the joule, 1 J =
1Nm = 1 kgm2 s−2. A common alternative unit used in chemical thermodynamics is the
calorie, which was originally defined as the amount of energy required to raise the temperature
of water by 1 ◦C at a certain temperature. There have been several different (and incompatible)
definitions of the calorie over the years but the one commonly used in chemistry is the
thermochemical calorie, defined as 1 cal = 4.184 J exactly.

A very important point to note is that heat and work refer to types of energy transfer. Heat is
energy transfer caused by a temperature difference and work is energy transfer caused by an
external force. Systems may have more or less energy but they do not have heat or work, hence
terms like “latent heat” or “heat capacity”, which we will use in the rest of the course, are
somewhat misleading. The concepts that these terms describe originated at a time when heat
was thought to be a fluid substance that was transferred between bodies at different
temperatures (the caloric theory). This theory has been debunked, but the language remains.
Likewise, for simplicity in the language, we will use terms like “heat transfer” or “heat flow” to
mean “energy transferred in the form of heat”.

19



The First Law of Thermodynamics Physical Chemistry I (2022–2023)

2.2 Internal Energy and the First Law

The internal energy (U) of a system is the energy contained within it. The internal energy is
the total energy of the system (the sum of the kinetic and potential energies of all its particles)
excluding the kinetic and potential energies of the system as a whole.

Example. Consider our system is a box full of mechanical springs, for instance, a collection of
mechanical toys. We can raise the internal energy of the system by winding up the springs of the
mechanisms inside the box. However, the internal energy does not change if we push the box to
make it move or if we lift it because the kinetic and potential energies of the box as a whole are not
part of U .

Since U is the sum of the energies of the system’s particles, if we separate the system into two
equal-sized parts, each part receives a fraction of the particles and therefore their internal
energy would be only a fraction of the U in the original system. Therefore, the U of a system
equals the sum of the internal energies of its parts and, consequently, the internal energy is an
extensive property. Same as heat and work, the internal energy has units of energy, joules (J)
in the SI. Because it is an extensive property, we can define the molar internal energy (Um) as
the internal energy of the system divided by the total amount of substance:

Um =
U

n
(2.6)

The molar internal energy is an intensive property, with SI units of joule per mole (J/mol). Far
more common units are kJ/mol and kcal/mol.

The first law of thermodynamics says that the internal energy (U) is a state function
whose change in a closed system equals the energy transferred as heat (q) plus the
energy transferred as work (w):

∆U = q + w, for a closed system. (2.7)

The validity of the first law is postulated based on experimental evidence. In order to derive
useful thermodynamic relations, we will often consider infinitesimal changes in the internal
energy of a system as a response to infinitesimal changes in other properties. The differential
statement of the first law is:

dU = dq + dw (2.8)

where dq is an infinitesimal heat transfer and dw is an infinitesimal work. Note that we have
considered closed systems only because a closed system can transfer only energy with its
surroundings, either in the form of heat or work. An isolated system is a particular type of
closed system that exchanges no energy, so ∆U = q = w = 0. In an open system, there is mass
transfer in addition to energy transfer and the molecules entering and exiting the system carry
energy with them, so additional terms are needed in Eq. 2.7 to be valid for open systems (these
will be seen later). The signs of heat and work in the first law (Eq. 2.7) are such that energy
gained by the system is positive and energy lost by the system is negative.

The first law is a re-statement of the conservation of energy principle for thermodynamic
systems. We can always assume the universe (the combination of system plus surroundings) is
an isolated system. Combined with the fact that U is extensive, and therefore
Uuniverse = Usystem + Usurroundings, we have

∆Uuniverse = ∆Usystem +∆Usurroundings = 0 (2.9)

Therefore, the internal energy change for the system equals minus the change in the
surroundings:

∆Usystem = −∆Usurroundings (2.10)
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Figure 2.1: Four different processes connecting an initial and a final state in a pure gas.

and, consequently, the energy is conserved. An important consequence of the first law is the
impossibility of constructing a “perpetual motion machine” whose only effect is to perform work
indefinitely without drawing energy from its surroundings. This would violate the first law,
since this machine would be increasing the energy of the universe.

Another important point about the first law is that it posits that work and heat have the same
effect on the system, namely, changing its internal energy. The equivalence of heat and work
was demonstrated by Joule who showed in 1840 that it is possible to raise the temperature of
water in an insulated container by stirring it with a paddle wheel (i.e. by exerting work on it).
Joule’s experiment was used to establish the “mechanical equivalent of heat”, the amount of
mechanical work required to increase the temperature of one gram water by one degree celsius
(4.184 J, what is today known as a calorie) and was a large step towards abandoning caloric
theory, because it showed that the hypothetical “caloric” fluid could be created out of nothing
by applying mechanical work.

The first law also states that U is a state function. This means that its value is determined by
the thermodynamic state of the system, which in turn is determined by the state variables.
Hence, U can be written as a mathematical function of the state variables. For instance, for a
pure gas in a closed system, we can write U(V, T ), or U(p, T ), or U(p, V ), depending on
convenience.

In the rest of the course we will consider many examples of thermodynamic processes. A
thermodynamic process is a change in the system between an initial thermodynamic state
at equilibrium (i) and a final thermodynamic state also at equilibrium (f). In general, there
are infinitely many processes that connect a given pair of initial and final states. This is
exemplified in Figure 2.1 for a pure gas. If we expand a gas from the thermodynamic state
(Vi, Ti) to the state (Vf , Tf ) with Vf > Vi, we could use the following two-step process (process
a in the figure):

(Vi, Ti) −→ (Vi, Tf ) −→ (Vf , Tf )

where an isochoric (constant volume) heating is followed by an isothermal (constant
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temperature) expansion. Alternatively, we could expand first and then raise the temperature
(process b):

(Vi, Ti) −→ (Vf , Ti) −→ (Vf , Tf )

Or we could make the system go in a straight line from (Vi, Ti) to (Vf , Tf ) (process c):

((1− x)Vi + xVf , (1− x)Ti + xTf ), with x ∈ [0, 1]

Or we could take an entirely arbitrary path like process d in the figure.

Because U is postulated to be a state function by the first law, its value depends only on the
current thermodynamic state of the system and not on its previous history. Therefore, if we
consider a process in which the system goes from an initial state i to a final state f , the change
in internal energy (∆U) associated with this process depends only on the energies of the initial
(Ui) and the final states (Uf ), and not on the path taken between them:

∆U = Uf − Ui (2.11)

In particular, the four processes in Figure 2.1, as well as any other processes between those two
states, have the same ∆U given by Eq. 2.11. In general, work and heat are not state
functions. The amount of energy transferred as heat (or work) is different for the different
paths in Figure 2.1, and they cannot be calculated from the initial and final states alone.

In the particular case of an ideal gas, molecules do not interact with each other. Consider, for
instance, a system composed of a number of classical particles with charge qi and mass mi. The
internal energy of this system is the sum of its kinetic and potential energies:

U = T + V =
1

2
miv

2
i +

1

4πε

∑
i>j

qiqj
rij

(2.12)

Now we increase the system’s volume at constant temperature (an isothermal expansion). The
kinetic energy remains unchanged because the molecular velocities are related to the system’s
temperature, which does not change in this process. However, the potential energy changes
because the particles are now further apart on average, therefore U also changes. If we now
consider the same system with no intermolecular interactions (qi = 0), the second term (the
potential energy) vanishes and U is the same before and after the isothermal expansion.
Therefore, if the particles do not interact with each other, U is independent of the system’s
volume and depends only on temperature. This result is valid for any system of non-interacting
molecules, and therefore the internal energy of an ideal gas depends only on its
temperature. Later in the course, we will prove this result is a consequence of the ideal gas
law (Eq. 1.18). This observation means that the temperature of an ideal gas is a direct measure
of its internal energy. For instance, using statistical thermodynamics, it is possible to show that
the molar internal energy of a monoatomic ideal gas is:

Um =
3

2
RT (2.13)

The internal energy of an ideal gas is more complicated for polyatomic molecules but it always
depends on temperature only.

2.3 Mathematical Background and Thermodynamic Notation

In the remainder of the course we will use some mathematical results to develop the theory.
Thermodynamics uses a specific notation that may be different from the one used in previous
courses. For this reason, the mathematical results we need are summarized here. To avoid
clout, we always assume functions and paths are continuous and sufficiently smooth, and the
functions are defined everywhere in the relevant domain.
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2.3.1 Partial Derivatives and the Differential of a Function

Assume we have a scalar function of several variables f : Rn → R that assigns a value to every
point, f(x) = f(x1, . . . , xn). The partial derivative of f(x) with respect to variable xi is the
derivative of the function with respect to that variable, holding the other variables constant. In
thermodynamics, the following notation is used for a partial derivative:(

∂f

∂xi

)
xj ̸=i

(2.14)

For instance, the partial derivative of the internal energy function U(V, T ) with respect to
volume is: (

∂U

∂V

)
T

(2.15)

This is read as “the derivative of the internal energy with respect to volume at constant
temperature”. The fact that the other variables are held constant is implied in the usual
notation for a partial derivative but the thermodynamic notation is a convenient way of
expressing the whole set of variables on which the function depends. As we have seen, U for a
pure substance in a closed system can also be written as U(p, V ) or U(p, T ), depending on
which quantities we use as state variables. Using the thermodynamic notation circumvents the
potential confusion had we considered the volume derivative of U(V, p):(

∂U

∂V

)
p

(2.16)

which is different from the partial derivative in Eq. 2.15.

The differential of a scalar function f : Rn → R, denoted by df , is a Rn → Rn vector field
whose n components are the partial derivatives of the function with respect to the variables:

df(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
(2.17)

The differential, which is very similar to the concept of gradient in differential geometry,
represents the slope of the function in every possible direction and, as such, it is a measure of
the infinitesimal change in the function as a response of an infinitesimal change in one or more
of its variables. For convenience, the differential is commonly written as:

df =

(
∂f

∂x1

)
dx1 + . . .+

(
∂f

∂xn

)
dxn (2.18)

The differentials of composite functions are calculated using rules similar to normal derivatives.
For instance, if we have two functions f(x, y) and g(x, y) and we consider the differential of the
product, we find:

d(fg) =

(
∂(fg)

∂x

)
dx+

(
∂(fg)

∂y

)
dy =

[(
∂f

∂x

)
g + f

(
∂g

∂x

)]
dx+

[(
∂f

∂y

)
g + f

(
∂g

∂y

)]
dy

=

[(
∂f

∂x

)
dx+

(
∂f

∂y

)
dy

]
g + f

[(
∂g

∂x

)
dx+

(
∂g

∂y

)
dy

]
= df × g + f × dg (2.19)

Since the derivatives are calculated component-wise, the rules for calculating differentials are
the same as the rules for calculating derivatives. An example of a differential in
thermodynamics is:

dU =

(
∂U

∂V

)
T

dV +

(
∂U

∂T

)
V

dT (2.20)

for the U(T, V ) function.
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2.3.2 Vector Fields and Path Integrals

A vector field is a function F : Rm → Rn that assigns a vector:

F(r) = (F1(r), F2(r), . . . , Fn(r)) (2.21)

to every position r. We define a smooth path C in Rm by a parametrization s(t) where
t ∈ [a, b]. This means that the path starts at s(a) and goes continuously to its end at s(b). The
path integral (or line integral) of the vector field along this path is defined as:∫

C
F =

∫
C
F · ds =

∫ b

a
F(s(t)) · s′(t)dt (2.22)

where · represents the scalar product and s′(t) = ds
dt is the derivative of the curve

parametrization, which is a vector tangent to the curve at all points. For instance, if we have a
force F acting on a body that follows a trajectory C given by s(t), the work exerted on the
body is calculated by integrating Eq. 2.1:

wbody =

∫
C
F · ds (2.23)

and the path integral is calculated as above. The value of a path integral is independent of the
parametrization chosen to represent the path.

For a given vector field dg : Rn → Rn, the following four statements are equivalent:

1. The path integral over any closed path is zero:∮
C
dg = 0 (2.24)

A closed path is one where the initial and the final points coincide. A path integral over a
closed path is sometimes symbolized by putting a circle on the integral symbol, as above,
but this is not necessary.

2. All path integrals between any two points A and B have the same value regardless of the
path.

3. The vector field dg is the differential of a function g(x):

dg =

(
∂g

∂x1
, . . . ,

∂g

∂xn

)
(2.25)

4. The crossed second derivatives of dg are identical:

∂(dgi)

∂xj
=

∂(dgj)

∂xi
(2.26)

for all i and j.

When any of these conditions hold, which means all the others also hold because they are
equivalent, we say that dg is an exact differential. In other applications, dg is called a
conservative field (for instance, an electric field) and g is its potential function (for instance,
the electric potential). A vector field that does not fulfill these conditions is an inexact
differential. (Sometimes inexact differentials are denoted δg or d̄g instead of dg, but we will
not use this notation.)
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A property of exact differentials that we will use very often is that if C is a path between A and
B, the line integral over C of the exact differential dg is:∫

C
dg =

∫ b

a
dg(x(t)) · x′(t)dt =

∫ b

a

(∑
i

∂g

∂xi

∂xi
∂t

)
dt =

∫ b

a

dg

dt
dt

= g(x(b))− g(x(a)) = g(B)− g(A) (2.27)

for all paths C that start at A and end at B, x(t) being an arbitrary parametrization of the
path. The value of the path integral of an exact differential equals the value of the potential
function at the final point minus the initial point. This is the statement analogous to the
fundamental theorem of calculus, but applied to path integrals.

In thermodynamics, an exact differential always derives from a state function, which acts as its
potential function. As discussed above, the internal energy is a state function so it has an exact
differential (dU), composed of the derivatives of U with respect to the chosen state variables.
In contrast, heat and work are not state functions, so the corresponding vector fields
representing the infinitesimal transfer of heat and work as a response to a change in state
variables (dq and dw) cannot be written as differentials of a potential function. Therefore, heat
and work are inexact differentials, and the heat and work transferred in a process depends on
the process itself, not only on the initial and final points.

2.3.3 Useful Relations

We now derive a few relations between the derivatives of exact differentials that are useful in
thermodynamics. Consider a function f(x, y) that, in our context, is a state function of the
state variables x and y. We wish to change the state variables to x and z, and so we express y
as a function of the new variables, y(x, z). The partial derivative of f(x, z) with respect to x
must be equal to the total derivative of f(x, y(x, z)) with respect to x calculated applying the
chain rule: (

∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

(2.28)

Note that the same result would have been obtained by starting from the differential of f(x, y):

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (2.29)

and then “dividing” by dx and taking the derivatives at constant z. We will use this shorthand
operation in some derivations.

In the function y(x, z) we consider the z variable fixed for now. This one-variable function
maps values x → y. The corresponding one-variable inverse function maps values of y → x, and
is therefore x(y, z) at the same z. Since the derivative of the inverse function is the inverse of
the function derivative, we have: (

∂y

∂x

)
z

=
1(

∂x
∂y

)
z

(2.30)

Equation 2.28 can be applied to the particular case of f(x, y) = z(x, y). In this case, the
left-hand side of the equation is zero and it reduces to:

0 =

(
∂z

∂x

)
y

+

(
∂z

∂y

)
x

(
∂y

∂x

)
z

(2.31)
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Table 2.1: Types of work.

Name Factors dw

p–V External pressure (pext) and volume (V ) −pextdV
Surface expansion Surface tension (γ) and surface area (σ) γdσ
Extension Tension (f) and length (l) fdl
Electrical Charge (Q) and electric potential (ϕ) ϕdQ

Electric potential (ϕ) and charge (Q) Qdϕ

Rearranging,

1(
∂y
∂x

)
z

= −

(
∂z
∂y

)
x(

∂z
∂x

)
y

(2.32)

And using Eq. 2.30 we can rewrite it as:(
∂x

∂y

)
z

= −
(
∂x

∂z

)
y

(
∂z

∂y

)
x

(2.33)

Again, note how this relation could have been derived from the differential of x(y, z):

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz (2.34)

by first “dividing” by dy and then taking constant x, which makes dx = 0. This shorthand
operation is also occasionally useful.

Equation 2.33 is sometimes rearranged using Eq. 2.30 in a more symmetric form:(
∂y

∂x

)
z

(
∂x

∂z

)
y

(
∂z

∂y

)
x

= −1 (2.35)

This relation is known as the triple product rule or the Euler chain relation.

In summary, the four relations we just derived are:(
∂f

∂x

)
z

=

(
∂f

∂x

)
y

+

(
∂f

∂y

)
x

(
∂y

∂x

)
z

(2.36)(
∂y

∂x

)
z

=
1(

∂x
∂y

)
z

(2.37)

(
∂x

∂y

)
z

= −
(
∂x

∂z

)
y

(
∂z

∂y

)
x

(2.38)(
∂y

∂x

)
z

(
∂x

∂z

)
y

(
∂z

∂y

)
x

= −1 (2.39)

These will be used repeatedly throughout the course.

2.4 Pressure-Volume (p–V) Work

Depending on the nature of the force exerted on the system, there are several types of work. A
few examples of different kinds of work are given in Table 2.1. In chemical systems, an
important kind of work is done by the compression or expansion of gases, known as
pressure-volume (p–V) work or expansion work. Many chemical reactions (for instance,
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Figure 2.2: An example of a system exerting p–V work. The pressure inside the cylinder (p) is greater
than the external pressure (pext) and, as a result, the system expands transferring energy as work to the
surroundings.

a combustion) generate gases, and the work done by those gases on the surroundings has to be
taken into account when calculating the thermodynamic properties associated with those
reactions. Other types of work exist, and we will see some of them later. For now, we denote
work that is not p–V as non-expansion work or additional work. The first law (Eq. 2.8)
can be rewritten as:

dU = dq + dw = dq + dwpv + dwnon-pv (2.40)

where dwpv is the p–V work and dwnon-pv is the non-expansion work. In the rest of this
chapter, and for most of this course, we will assume p–V work only.

A schematic diagram of a system doing p–V work is shown in Figure 2.2. The system has a
frictionless movable piston separating it from the surroundings. The pressure inside the system
(p) is greater than the external pressure (pext), and consequently the system expands until both
pressures equalize and mechanical equilibrium is re-established. The work is being done by the
system on the surroundings so, in our sign convention, it has negative value because the system
is losing energy. For an infinitesimal displacement of the piston dz, the work is:

dw = −|Fext|dz (2.41)

where Fext is the external force on the piston. Pressure is defined as applied force per unit area
(Eq. 1.7) so we can rewrite this equation as:

dw = −|Fext|
A

×Adz = −pext ×Adz (2.42)

but since the volume is the area of the cylinder times its height, the infinitesimal change in the
volume of the system is dV = Adz. Therefore,

dw = −pextdV (2.43)

The total work when the system expands from Vi to Vf is calculated by integrating the
equation above:

w = −
∫ Vf

Vi

pextdV (2.44)

Note that it is the external pressure, not the pressure of the system, what determines the
amount of work exerted. This equation also works if the system is compressed. In that case,
Vf < Vi and the work would be positive, which is consistent with the increase in the system’s
energy. Non-expansion work has similar expressions for the work differential, involving the
product of one intensive and one extensive variable (see Table 2.1).
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2.5 Constant-Volume Heat Capacity

If we consider a thermodynamic process in which the volume of the system does not change (an
isochoric process), then dV = 0 and:

dw = −pextdV = 0 (2.45)

Therefore, in a constant-volume process the change in internal energy equals the heat
transferred:

dU = dq = dqV (2.46)

where we used the subscript V to denote that the heat is transferred at constant volume. If the
constant-volume process goes between an initial and a final state, we integrate this equation to
find that the change in internal energy equals the heat transferred in a
constant-volume process:

∆U = qV (2.47)

Note that we do not write ∆qV because heat, unlike the internal energy, is not a state function,
so there is no “initial heat” and “final heat”, just heat transferred during a process.

The change in internal energy in a constant-volume process typically causes a change in the
temperature of the system. The relation between the change in the internal energy and the
temperature of a system during a constant-volume process is known as the constant-volume
heat capacity:

CV =

(
∂U

∂T

)
V

(2.48)

Since ∆U = qV at constant volume, CV measures how much heat is required to raise the
temperature of a system that is held at constant volume by a certain amount. A higher CV

means that more heat is required to raise the system’s temperature, hence the term “heat
capacity”. The constant-volume heat capacity is an extensive property because U is extensive
and T is intensive. Its units are energy divided by temperature, J/K in the SI, although cal/K
are common. Very often, heat capacities are reported as intensive quantities, for instance, the
molar constant-volume heat capacity is the heat capacity per mole of substance:

CV,m =
CV

n
(2.49)

The SI units of the molar heat capacity are J/K/mol. Another common intensive version of the
heat capacity is the specific constant-volume heat capacity (or simply the specific heat),
defined as the heat capacity divided by the mass of the system:

CV,s =
CV

m
(2.50)

Its SI unit is J/K/kg but 1 J/K/g = 1× 10−3 J/K/kg is more common.

The heat capacity is always positive, indicating that the internal energy increases with
increasing temperature. Typical molar constant-volume heat capacities (Cv,m) are
28.46 J/K/mol (CO2), 20.8 J/K/mol (N2), and 74.53 J/K/mol (liquid water). The specific heat
capacity of water is about one calorie per kelvin and kilogram at room temperature; this was,
in fact, the way the calorie was defined originally. The molar internal energy of a monoatomic
ideal gas is (Eq. 2.13) 3/2RT , so its molar constant-volume heat capacity is:

CV,m =

(
∂Um

∂T

)
V

=
3

2
R = 12.47 J/K/mol (2.51)
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Figure 2.3: Diagram an adiabatic bomb calorimeter.

The heat capacity is itself a function of the thermodynamic state and in particular of
temperature although, in general, heat capacities change relatively slowly with temperature.

The relation ∆U = qV (Eq. 2.47) is important because it enables the determination of internal
energy differences by means of calorimetric experiments. Calorimetry studies the transfer of
energy as heat during a chemical process. The device used for this task is a calorimeter. In
particular, heat transferred at constant volume (qV ) can be measured using an adiabatic
bomb calorimeter, shown schematically in Figure 2.3. The system under study is placed
inside a closed container with rigid walls (the “bomb”), which is immersed in a water bath
surrounded by adiabatic (thermally insulating) walls. After the calorimeter is set up, the
reaction is initiated and we measure the change in temperature ∆T of the calorimeter, which is
approximately proportional to the amount energy transferred as heat:

∆U = qV = C∆T (2.52)

where C is the heat capacity of the calorimeter assembly (known as the calorimeter
constant). This constant is determined beforehand by calibrating the apparatus, either by
burning a substance with known properties or by using an electrical resistance to raise its
temperature. Bomb calorimeters can also be used to determine the constant-volume heat
capacities of substances by measuring the rise in temperature of the calorimeter when a
measured amount of energy is transferred into the system, typically by passing a known
amount of current through an electrical resistance.

Example. A current of 10A from a 12V electrical supply is passed for 300 s through an adiabatic
bomb calorimeter at room temperature, resulting in a rise of temperature of 5.5K. The heat capacity
of the calorimeter is:

C =
∆U

∆T
=

IV t

∆T
=

10A× 12V × 300 s

5.5K
= 6545.5 J/K = 6.5 kJ/K

Now we carry out a combustion of 2.016 g of glucose at the same temperature. This results in a
temperature rise of 3.282K. The ∆U of this particular process is:

∆U = C∆T = 6545.5 J/K× 3.282K = 21 482.2 J = 21.48 kJ
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2.6 Enthalpy

Constant pressure conditions are a lot more common in chemistry than constant volume. A
simple example is when a chemical reaction produces gases and these are released into the
atmosphere. During a process at constant pressure, known as an isobaric process, the system
may exchange energy both as heat and as work with the surroundings. The natural state
function to describe the energy change during an isobaric process is the enthalpy, defined as:

H = U + pV (2.53)

where p is the system pressure and V is its volume. Because U , p, and V are state functions,
the enthalpy is also a state function. Same as the internal energy, the enthalpy has units of
energy and is an extensive property, so we can define a molar enthalpy as:

Hm =
H

n
(2.54)

The molar enthalpy itself is an intensive property and has units of energy per mole.

The differential of the enthalpy is:

dH = d(U + pV ) = dU + pdV + V dp (2.55)

but using the first law (Eq. 2.8), we have:

dH = dq + dw + pdV + V dp (2.56)

For an isobaric process, dp = 0, so:

dH = dq + dw + pdV (2.57)

Furthermore, the initial and final states of the isobaric process must be at equilibrium and have
pressure equal to p. Since thermodynamic equilibrium implies mechanical equilibrium, this
pressure equals the external pressure, p = pext and, since the process is isobaric, this equation is
valid at any point during the process. Consequently, Eq. 2.43 becomes:

dw = −pextdV = −pdV (2.58)

Substituting in Eq. 2.57, we have:
dH = dq = dqp (2.59)

where the subscript p is used to indicate that the process is at constant pressure. If we
integrate between the initial and the final states:

∆H = qp (2.60)

so the change in enthalpy of a system is equal to the heat transferred during a
constant-pressure process (compare to Eq. 2.47).

The enthalpy change can be measured by determining ∆U in a bomb calorimeter and then
transforming to ∆H. If the process involves liquids and solids, where the molar volumes are
relatively small and do not change very much, then:

∆H = ∆U + p∆V ≈ ∆U (2.61)

This is not true in processes involving gases. In an isothermal (constant-temperature) process
involving ideal gases in which ∆ng moles of gas are generated, we have:

∆H = ∆U + p∆V = ∆U + p× ∆ngRT

p
= ∆U +∆ngRT (2.62)
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Example. The ∆Um of converting the calcite polymorph of CaCO3(s) (ρ = 2.17 g/cm3) to aragonite
(ρ = 2.93 g/cm3) at 1 atm and room temperature is 0.21 kJ/mol. The molar change in enthalpy is:

∆Hm = Hm(a)−Hm(c) = Um(a) + pVm(a)− Um(c)− pVm(c) = ∆Um + p(Vm(a)− Vm(c))

From Eq. 1.6, ρ = M/Vm, so at one atmosphere:

∆Hm −∆Um = pM

(
1

ρ(a)
− 1

ρ(c)

)
= 101 325Pa× 100.09 g/mol×

(
1

2.93 g/cm3
− 1

2.71 g/cm3

)
× 1m3

1× 106 cm3
= −0.28 J/K/mol

which is about a thousandth of the ∆Um. In contrast, in the reaction:

2 H2(g) + O2(g) 2 H2O(l)

we have 3 mol of gas disappearing, so under isothermal conditions at room temperature and assuming
ideal behavior of the gases:

∆Hm −∆Um = −3×RT = −3× 8.314 J/K/mol× 298.15K× 1 kJ

1000 J
= −7.44 kJ/mol

Note the difference between enthalpy change and energy change is much larger (kJ/mol instead of
J/mol) in the process involving gases.

The change in enthalpy as a response to a change in temperature at constant pressure is the
constant-pressure heat capacity:

Cp =

(
∂H

∂T

)
p

(2.63)

Since ∆H = qp (Eq. 2.59), Cp measures the heat required to raise the temperature of the
system at constant pressure. Apart from this difference, Cp is entirely analogous to CV . It is an
extensive property, has the same units, and molar and specific versions of Cp can be defined:

Cp,m =
Cp

n
(2.64)

Cp,s =
Cp

m
(2.65)

The Cp itself depends on temperature, but in general only mildly. The ∆H of a
constant-pressure process can be calculated by integrating Eq. 2.63:

∆H = qp =

∫ Tf

Ti

Cp(T )dT (2.66)

Some example molar constant-pressure heat capacities (Cp,m) are, in J/K/moL: 29.1 (N2), 36.9
(CO2), 75.3 (water), 112 (ethanol), 6.115 (diamond), 900 (paraffin wax).

Example. Let us calculate the change in the molar enthalpy of N2 when heated between 25 ◦C and
100 ◦C. Because the temperature range is relatively large, the heat capacity cannot be assumed to
be constant. Tabulated values of heat capacities indicate that in this temperature range the heat
capacity of N2 is given by the expression:

Cp(T )/(J/K/mol) = a+ bT +
c

T 2

where a = 28.58, b = 3.77 × 10−3 K−1, and c = −0.50 × 105 K2. Therefore, the enthalpy change is
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Figure 2.4: Left: diagram of a differential scanning calorimeter. Right: DSC thermogram of the thermal
denaturation (unfolding) of a human immunoglobulin protein (hIgG4-A) under several conditions. The
peaks indicate the onset of the denaturation process and the ∆H can be calculated as the area under
the peak (Eq. 2.66). Reproduced with permission from Gill et al. “Differential scanning calorimetry
techniques: applications in biology and nanoscience”, J. Biomol. Tech. 21 167 (2010).

given by:

∆H =

∫ Tf

Ti

Cp(T )dT =

[
aT +

bT 2

2
− c

T

]Tf

Ti

= a(Tf − Ti) +
b

2
(T 2

f − T 2
i )− c

(
1

Tf
− 1

Ti

)
= 2.20 kJ/mol

The experimental determination of ∆H can be done using an isobaric calorimeter in which
the heat evolved in an isobaric process is measured. An alternative is differential scanning
calorimeter (DSC), shown in Figure 2.4 (left). In a DSC apparatus, two small compartments
are heated at a constant rate using a resistance such that the temperature is increased linearly
with time. One of the compartments contains the sample and the other contains a reference
material which is known to undergo no physical or chemical changes in the studied temperature
range. If no chemical change occurs in the sample, the heat transferred is proportional to the
change in temperature (qp = Cp∆T ), and this can be used to measure the constant-pressure
heat capacity of the sample. If some chemical or physical change occurs in the sample, the extra
heat required to keep the temperature the same as in the reference material, qp,ex, is recorded
(or, rather, its temperature derivative the extra heat capacity, Cp,ex). This measurement is
directly related to the ∆H involved in those changes. The plot of the extra heat capacity of the
sample as a function of temperature produced by DSC is known as a thermogram. An
example DSC thermogram for the thermal denaturation of a protein is shown in Figure 2.4.

2.7 Standard Enthalpy Changes

When a system undergoes a physical or chemical transformation, the ∆H, or the change in any
other thermodynamic property, refers to the difference between the initial and the final state of
the transformation:

∆H = Hfinal −Hinitial (2.67)

For simplicity, enthalpy changes for chemical and physical transformations are often reported
and tabulated for processes in which the substances in the initial and the final states are under
a certain set of standard conditions, adopted by convention. The standard enthalpy change
∆H◦ is the enthalpy of a process in which the substances in the initial and final states are in
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their standard state. The standard state of a substance, as defined by the IUPAC convention,
is:

• If the substance is a gas, the standard state is the hypothetical state in which the gas is
pure at a pressure of 1 bar and has ideal gas behavior.

• In the case of liquids and solids, the standard state is the pure substance in the same
aggregation state (liquid or solid) and at a pressure of 1 bar.

The definition of standard state applies to pure substances as well as components in mixtures.
In the particular case of solutions, we will see additional definitions for the standard state of
solvent and solutes later on. The list of all standard states used in this course is given in
Appendix A. Note that temperature is not part of the standard state specification so, to be
completely defined, a standard enthalpy must be accompanied by the temperatures at the
initial and final points. This is usually done by indicating the temperature as a subscript in the
case of an isothermal process, for instance, ∆H◦

298.15.

Tables of standard enthalpies typically use room temperature (25 ◦C = 298.15K). A pressure of
1 bar is referred to as the standard pressure, and denoted by the symbol p◦. The degree
symbol (◦) can be used to indicate that standard quantities other than the enthalpy (∆U◦,...).
The meaning is the same as with the enthalpy: all substances in their initial and final states of
the process are assumed to be in their standard states at the considered temperature. Likewise,
the standard internal energy U◦ or the standard enthalpy H◦ of a substance is the internal
energy or enthalpy of that substance under standard conditions.

Example. The standard state of liquid water at 25 ◦C is pure liquid water at 25 ◦C and 1 bar. The
standard state of water vapor at 400K is pure water vapor at that temperature and 1 bar, and in a
hypothetical state in which it has ideal gas behavior. The standard state of ice at 25 ◦C is pure ice
at 25 ◦C and 1 bar.

Note that the standard states for the last two systems in the example refer to hypothetical
states that are not experimentally observable. This may seem strange at first but it is done for
convenience, because the standard quantities are easier to calculate and this choice of standard
state facilitates thermodynamic calculations.

Some enthalpy changes for various physical and chemical transformations are widely utilized,
and therefore have specific names. For instance, the molar enthalpy of vaporization
(∆vapH, also known as the heat of vaporization) is the molar enthalpy for the transformation
of one mole of liquid into one mole of gas. For convenience, tabulated data make use of the
standard states: the standard enthalpy of vaporization (∆vapH

◦) is the enthalpy of
vaporization in which the liquid and the gas are both in their standard states.

Example. The standard enthalpy of vaporization of water is the enthalpy change associated with
the transformation:

H2O(l) H2O(g)

where both the liquid and vapor water are at 1 bar and the water vapor behaves ideally. Its value
at 373K is ∆H◦

vap = 40.66 kJ/mol.

Another named enthalpy change is the standard enthalpy of fusion (∆fusH
◦), which is

associated with the melting of one mole of pure solid into liquid.

Example. The standard enthalpy of fusion of water corresponds to the transformation:

H2O(s) H2O(l)

where the solid and the liquid are pure at 1 bar. Its value at 273K is ∆H◦
fus = 6.01 kJ/mol.
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Table 2.2: Named enthalpy changes defined by the IUPAC and in common use. Standard versions of
these quantities exist, indicated by the superscript ◦, in which the substances in the initial and final states
of the transformation are in their standard states.

Enthalpy of... Process Symbol
Transition Phase α −→ Phase β ∆trsH
Fusion/Melting solid −→ liquid ∆fusH
Vaporization liquid −→ gas ∆vapH
Sublimation solid −→ gas ∆subH
Mixing pure −→ mixture ∆mixH
Solution solid solute −→ solution ∆solH
Dilution liquid solute −→ solution ∆dilH
Hydration X(g) −→ X(aq) ∆hydH

Atomization compound −→ atoms (gas) ∆atH

Ionization X(g) X +
(g) + e –

(g) ∆ionH

Electron gain X(g) + e –
(g) X –

(g) ∆egH

Reaction reactants −→ products ∆rH
Combustion compound + O2(g) −→ CO2(g) + H2O(l,g) ∆cH

Formation elements −→ compound ∆fH
Activation reactants −→ transition state ∆‡H

A list of enthalpy changes for common transformations is shown in Table 2.2. The standard
version of the quantities shown in the table refers to the process in which the substances in the
initial and final states are in their standard state at the chosen temperature.

Because the enthalpy is a state function, the enthalpy change of any transformation depends
only on the initial and final states. Consequently, known enthalpy changes can be combined to
generate enthalpy changes for other, perhaps unknown, transformations. For instance, assume
we want to calculate the standard enthalpy of sublimation of ice water. According to Table 2.2,
this refers to the process:

H2O(s) H2O(g) (2.68)

and is denoted ∆subH
◦. We can consider that this transformation occurs in two steps, first

from solid to liquid, and then from liquid to gas:

H2O(s) H2O(l) ∆fusH
◦ (2.69)

H2O(l) H2O(g) ∆vapH
◦ (2.70)

It takes ∆fusH
◦ to go from solid to liquid and ∆vapH

◦ to go from liquid to gas. Because the
sublimation can be written as fusion followed by vaporization and the enthalpy change depends
only on the initial and final states, the enthalpy of sublimation is:

∆subH
◦ = ∆fusH

◦ +∆vapH
◦ (2.71)

This is correct even though during a sublimation water is never in the liquid state.

Another consequence of the enthalpy being a state function is that the enthalpy change for a
transformation is minus the enthalpy change for the reverse transformation. For instance, the
standard enthalpy change for the condensation of water:

H2O(g) H2O(l) (2.72)

is minus the standard enthalpy of vaporization, −∆vapH
◦.
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2.8 Standard Reaction Enthalpies

An important standard enthalpy change is the standard reaction enthalpy (∆rH
◦) the

molar enthalpy change associated with the conversion of pure unmixed reactants in their
standard states to pure unmixed products in their standard states for a chemical reaction. This
quantity is sometimes also known as the standard enthalpy of reaction or the heat of
reaction. For instance, for the reaction:

2 A + B 3 C + D (2.73)

the standard reaction enthalpy is:

∆rH
◦ = 3H◦

m(C) +H◦
m(D)− 2H◦

m(A)−H◦
m(B)

=

products∑
B

|νB|H◦
m(B)−

reactants∑
A

|νA|H◦
m(A) (2.74)

where H◦
m is the molar enthalpy of the corresponding substances in their standard states and

|ν| are the absolute values of the stoichiometric coefficients. A reaction with ∆rH
◦ < 0 is

known as an exothermic reaction. A reaction with ∆rH
◦ > 0 is an endothermic reaction.

Since constant pressure conditions are common in chemistry, and ∆H = qP , exothermic
reactions almost always release heat and endothermic reactions absorb heat from the
surroundings (hence the name “heat of reaction” for ∆rH

◦).

In the rest of the course, we will write a general chemical reaction as:

0 →
∑

i νi Xi (2.75)

where νi are the stoichiometric coefficients. The νi are adimensional quantities that are positive
if the species is a product and negative if it is a reactant. For instance, for the reaction in
Eq. 2.73, νA = −2, νB = −1, νC = 3, νD = 1. With this definition, the standard reaction
enthalpy can be written as:

∆rH
◦ =

∑
i

νiH
◦
m(i) (2.76)

where i runs over all species involved in the reaction (reactants and products). Compare to
Eq. 2.74.

The standard reaction enthalpies for some reactions have specific names. For instance, the
standard enthalpy of combustion (also, standard heat of combustion), ∆cH

◦, refers to
the reaction in which a mole of an organic substance is combusted with excess oxygen to give
H2O and CO2 (and N2, if N is present in the molecule). For instance, for glucose, the
combustion reaction is:

C6H12O6(s) + 6 O2(g) 6 CO2(g) + 6 H2O(l) (2.77)

and the standard enthalpy of combustion is ∆cH
◦ = −2808 kJ/mol.

Another important case is the standard enthalpy of formation (also, standard heat of
formation), ∆fH

◦, which is the standard reaction enthalpy for the formation of a compound
from its elements in their reference states. The reference state of an element is the standard
state of the element in its most stable form at 1 bar and the reaction temperature. (In the
particular case of elements that are gases at room temperature and 1 bar, the reference state is
conventionally taken as an ideal gas at 1 bar regardless of temperature.)
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Example. At room temperature, the stable form of N2 is a gas and the stable form of Hg is a liquid.
The stable form of C at room temperature is graphite, because at that temperature and 1 bar it is
more stable than its allotrope diamond, even though the interconversion between them is extremely
slow.

Note the difference between the concepts of reference state and standard state. Only elements
have reference states and, as discussed above, substances in their standard state need not be
stable at the chosen temperature—in fact their existence in the standard state may be
completely fictitious, as is the case with gases. With these definitions, the standard formation
enthalpy of, for instance, urea at room temperature, corresponds to the reaction:

C(s,graphite) + 2 H2(g) + N2(g) + 1
2 O2(g) CH4N2O(s) (2.78)

and its value is ∆fH
◦ = −333.51 kJ/mol. Note that, in a formation reaction, the stoichiometric

coefficient of the product is always one and all elements are in their stable form (gas for H2, N2,
and O2 and solid graphite for C). A consequence of the definition is that the standard enthalpy
of formation of an element in its reference form is zero at all temperatures.

For reactions in solution involving ionic species, defining the standard enthalpy of formation of
the ions poses a problem because it is not possible to prepare a solution with only cations or
only anions. To overcome this problem, we adopt the additional convention that the standard
enthalpy of formation of H+ is zero in aqueous solution at all temperatures:

∆fH
◦(H +

(aq)) = 0 at any temperature (2.79)

It is possible to calculate the standard enthalpies of formation of any other ion by using this
convention and measuring reaction enthalpies involving its salts.

Same as with the other enthalpy changes, standard reaction enthalpies can be combined using
the fact that the enthalpy is a state function. For instance, the hydrogenation of propene:

CH2 CHCH3(g) + H2(g) CH3CH2CH3(g) (2.80)

can be thought of as the combination of three reactions, namely the combustion of propene, the
combustion of propane, and the formation of water:

CH2 CHCH3(g) + 9
2 O2(g) 3 CO2(g) + 3 H2O(l) ∆cH

◦(propene) (2.81)
CH3CH2CH3(g) + 5 O2(g) 3 CO2(g) + 4 H2O(l) ∆cH

◦(propane) (2.82)

H2(g) + 1
2 O2(g) H2O(l) ∆fH

◦(H2O) (2.83)

The hydrogenation reaction (Eq. 2.80) can be obtained by adding the combustion of propene
(Eq. 2.81) and the formation of water (Eq. 2.83), and subtracting the combustion of propane
(Eq. 2.82). Therefore, the standard reaction enthalpy for the hydrogenation is:

∆rH
◦(hydrogenation) = ∆cH

◦(propene) + ∆fH
◦(H2O)−∆cH

◦(propane) (2.84)

This is an application of Hess’ law: the standard reaction enthalpy for a given chemical
reaction is the sum of the standard reaction enthalpies of all reactions into which it can be
decomposed. Hess’ law is applied when the transformation from reactants to products can be
achieved via two different paths. For the example reaction above, the corresponding paths are
shown in Figure 2.5.

The reactants in a chemical reaction can always be decomposed into their elements, and those
elements can always be put back to form the products. Therefore, a corollary of Hess’ law is
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Figure 2.5: Diagram showing the application of Hess’ law for the hydrogenation of propene. One can go
from reactants to products via the path on the left or the path on the right, so the sum of the enthalpy
changes in each path is equal.

that any standard reaction enthalpy can be calculated as a sum of standard formation
enthalpies:

∆rH
◦ =

∑
i

νi∆fH
◦(i) (2.85)

where i runs over reactants and products and νi are the stoichiometric coefficients. Similarly, if
the reaction involves only organic molecules, we could consider the disgregation of the reactants
into CO2 and H2O and the formation of the products back from these molecules. Therefore, in
this case, we can also use the combustion enthalpies to calculate the standard reaction enthalpy:

∆rH
◦ =

∑
i

νi∆cH
◦(i) (2.86)

Lastly, we consider the effect of temperature on standard reaction enthalpies. As mentioned
above, standard reaction enthalpies are usually tabulated at a certain temperature, typically at
room temperature. If we want a standard reaction enthalpy at a different temperature we can
use the fact that in a constant-pressure process:

dH = CpdT (2.87)

so the change in enthalpy between an initial (Ti) and final (Tf ) temperatures is:

H(Tf )−H(Ti) =

∫ Tf

Ti

CpdT (2.88)

If we divide by the number of moles, we find that the same equation applies to the molar
quantities:

Hm(Tf )−Hm(Ti) =

∫ Tf

Ti

Cp,mdT (2.89)

For the standard reaction enthalpy (Eq. 2.76) we can apply the equation above to each species
in the reaction:

∆rH
◦(Tf ) =

∑
k

νkH
◦
m(k, Tf ) =

∑
k

νk

[
H◦

m(k, Ti) +

∫ Tf

Ti

C◦
p,m(k)dT

]
(2.90)

= ∆rH
◦(Ti) +

∫ Tf

Ti

∆rC
◦
p,mdT (2.91)
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where we defined:
∆rC

◦
p,m =

∑
k

νkC
◦
p,m(k) (2.92)

This is known as Kirchhoff’s law. Note that by taking the temperature derivative at constant
pressure in Eq. 2.90 we also find that:

∆rC
◦
p,m =

(
∂∆rH

◦

∂T

)
p

(2.93)

which is analogous of the heat-capacity definition (Eq. 2.63) for the standard reaction enthalpy.

Example. At 298K, the ∆fH
◦ of water is −241.82 kJ/mol, and the standard molar heat capacities

(C◦
p,m) of the species involved in the formation reaction:

H2(g) + 1
2 O2(g) H2O(g)

are 33.58 J/K/mol (H2O(g)), 28.84 J/K/mol (H2(g)), and 29.37 J/K/mol (O2(g)). If we want to cal-
culate the ∆fH

◦ at 100 ◦C, we have:

∆rC
◦
p,m = C◦

p,m(H2O)− C◦
p,m(H2)−

1

2
C◦

p,m(O2) = −9.945 J/K/mol

Assuming the heat capacities do not change too much in this temperature range,

∆rH
◦(373.15K) = ∆rH

◦(298K) +

∫ Tf

Ti

∆rC
◦
p,m(k)dT ≈ ∆rH

◦(298K) + ∆rC
◦
p,m(k)×∆T

= −241.82 kJ/mol + (−9.945 J/K/mol)× 1 kJ

1000 J
× (373.15K− 298K)

= −242.57 kJ/mol

In quantitative work, Kirchhoff’s law is applied using empirical temperature relations for Cp,
typically with a form similar to:

Cp = a+ bT +
c

T 2
(2.94)

2.9 Material Properties

2.9.1 Derivatives of the Internal Energy

The derivatives of the internal energy and the enthalpy are measurable experimentally and
have physical meaning. Most of them are relevant in engineering and technological
applications, and are known as material properties. Let us consider a closed system
(constant n) with only one component. The thermodynamic state is determined by two of the
three variables T , V , and p. Therefore, the dependence of U (and H) on the state of the
system can be written in three different ways: U(V, T ), U(V, p), and U(p, T ).

For now, consider V and T are the state variables. The differential of U is:

dU =

(
∂U

∂V

)
T

dV +

(
∂U

∂T

)
V

dT (2.95)

The temperature derivative is already known (Eq. 2.48):

CV =

(
∂U

∂T

)
V

(2.96)
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and the other derivative is known as the internal pressure:

πT =

(
∂U

∂V

)
T

(2.97)

We justified on microscopic grounds, and we will prove later, that in an ideal gas U is a
function of T only so πT = 0 for an ideal gas. The internal pressure has units of pressure and,
in a gas, it can be positive or negative depending on whether intermolecular attraction or
repulsion forces dominate.

Using the relation in Eq. 2.36, or dividing Eq. 2.95 by dT at constant pressure, we can write
another derivative of U :(

∂U

∂T

)
p

=

(
∂U

∂T

)
V

+

(
∂U

∂V

)
T

(
∂V

∂T

)
p

= CV + πT

(
∂V

∂T

)
p

(2.98)

The temperature derivative of the volume on the right is related to the (volumetric) thermal
expansion coefficient (α), or thermal expansivity, defined as:

α =
1

V

(
∂V

∂T

)
p

(2.99)

The units of α in the SI are K−1. The expansion coefficient is a very important quantity in
engineering because it determines the expansion of materials when they are heated. Most
substances expand with increasing temperature but some contract, a phenomenon known as
negative thermal expansion. Some, like invar, a nickel-iron alloy used to construct precision
instruments, have near zero thermal expansion. Characteristic values of the thermal expansion
coefficient at room temperature are (in 1× 10−6K−1): 750 (ethanol), 207 (water), 36 (steel).
The expansion coefficient for a ideal gas is much higher than for liquids and solids:

α =
1

V

(
∂V

∂T

)
p

=
nR

pV
=

1

T
= 3.35× 10−3K−1 (2.100)

at room temperature, and the same can be said in general about real gases.

A quantity similar to the expansion coefficient is the isothermal compressibility, defined as:

κT = − 1

V

(
∂V

∂p

)
T

(2.101)

The compressibility is a measure of the decrease in volume with an increase in pressure. It is
always positive and has units of Pa−1 in the SI. Its inverse is the isothermal bulk modulus:

BT = −V

(
∂p

∂V

)
T

(2.102)

which has units of pressure. The bulk modulus determines the resistance of a material to
compression, and is therefore also of great technological importance. For solids and liquids, the
bulk modulus is high and their compressibilities are low. Bulk moduli for common materials
are (in GPa): 0.82 (methanol), 2.2 (water), 160 (steel), 443 (diamond). The bulk modulus of
gases is much lower than solids and liquids. For an ideal gas,

BT = −V

(
∂p

∂V

)
T

= −V

(
−nRT

V 2

)
= p = 1× 10−4GPa (2.103)

at 1 bar.
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Going back to Eq. 2.98, we can now rewrite the derivative of the internal energy in terms of
measurable material properties: (

∂U

∂T

)
p

= CV + απTV (2.104)

In the particular case of an ideal gas, πT = 0, so(
∂U

∂T

)
p

= CV (2.105)

and:

Cp − Cv =

(
∂H

∂T

)
p

−
(
∂U

∂T

)
V

=

(
∂(U + nRT )

∂T

)
p

−
(
∂U

∂T

)
V

=

(
∂U

∂T

)
p

+ nR−
(
∂U

∂T

)
V

= CV + nR− CV = nR (2.106)

For an ideal gas, the difference in the molar heat capacities is equal to R. As we shall see, this
is a particularization for ideal gases of a more general result for Cp − CV . Note that Cp > CV ,
which makes sense because if the ideal gas is heated at constant pressure, some of the energy
acquired as heat by the system is lost to exerting expansion work on the surroundings.

2.9.2 Derivatives of the Enthalpy

Now we consider the material properties obtained as derivatives of the enthalpy. As in the case
of the internal energy, we can choose to describe the enthalpy in terms of two out of the three
variables p, V , and T . Choosing p and T , the enthalpy differential is:

dH =

(
∂H

∂p

)
T

dp+

(
∂H

∂T

)
p

dT (2.107)

where we already know that the derivative in the second term is the constant-pressure heat
capacity (Eq. 2.63):

Cp =

(
∂H

∂T

)
p

(2.108)

For the derivative in the first term, we use Eq. 2.38 to find:(
∂H

∂p

)
T

= −
(
∂H

∂T

)
p

(
∂T

∂p

)
H

= −CpµJT (2.109)

where we defined the Joule-Thomson coefficient (µJT) as:

µJT =

(
∂T

∂p

)
H

(2.110)

With this definition, the enthalpy differential is written as:

dH = −µJTCpdp+ CpdT (2.111)

The Joule-Thomson coefficient is a measure of the change in temperature when a system,
typically a gas, is expanded or compressed under isenthalpic (constant enthalpy) conditions. It
has SI units of K/Pa, and it can be positive or negative, depending on the gas and the
conditions. For instance, for N2, µJT = 0.27K/atm and for He, µJT = −0.062K/atm, under
ambient conditions.
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Figure 2.6: A gas throttle. The gas is moving from left to right at high pressure (p1) and encounters a
throttle, which can be a constriction valve or a porous membrane that impedes the flow of the gas. After
passing the throttle, the gas pressure drops to p2.

The Joule-Thomson coefficient is a quantity of fundamental importance in the liquefaction of
gases and in refrigeration using compression cycles. Isenthalpic conditions are prevalent in the
“throttling” stage of a compression cycle, in which a gas is cooled (and possibly liquefied) by
making it pass through a constriction, as shown schematically in Figure 2.6. The gas at high
pressure (p1) is forced through a throttle, which could be a constriction in the pipe like a valve,
a hole, or a thick porous membrane. We assume a certain volume of gas (V1) is forced into the
throttle and compressed to a negligible volume compared to V1. The energy gained by the gas
in the form of work is:

w1 = −p1 × (0− V1) = p1V1 (2.112)

When the gas clears the throttle, it expands to a volume V2 > V1 and the gas after the throttle
is at a pressure lower than the original value (p2 < p1). The work exerted by the gas in the
expansion is:

w2 = −p2 × (V2 − 0) = −p2V2 (2.113)

The work done in the whole process is:

w = w1 + w2 = p1V1 − p2V2 (2.114)

If the walls of the pipe are adiabatic (they do not allow the transfer of heat with the
surroundings), then:

∆U = U2 − U1 = w = p1V1 − p2V2 (2.115)

Rearranging, we find:
H2 = U2 + p2V2 = U1 + p1V1 = H1 (2.116)

so the throttling process is isenthalpic:

∆H = H2 −H1 = 0 (2.117)

Most household refrigerators and freezers use a compression cycle in which the refrigerant fluid
at high pressure, typically a hydrofluorocarbon, is forced through a throttle valve causing its
temperature to drop under isenthalpic conditions. This is known as the Joule-Thomson
effect.

Regarding the value of the Joule-Thomson coefficient, U depends only on temperature in an
ideal gas, so the enthalpy of an ideal gas is:

H = U + pV = U + nRT (2.118)
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Figure 2.7: Left: Joule-Thomson inversion curves for several gases in terms of their reduced temperature
and pressure. (From Robert C. Hendricks et al. “Joule-Thomson inversion curves and related coefficients
for several simple fluids”, NASA technical note (1972), in the public domain.) Right: a schematic version
of the Joule-Thomson inversion curve for a typical gas.

which is also a function of temperature only. Therefore, the temperature does not change in an
isenthalpic process, and the Joule-Thomson coefficient of an ideal gas is zero:

µJT(ideal gas) =
(
∂T

∂p

)
H

= 0 (2.119)

Consequently, the value of µJT in real gases depends on the strength and nature of the
intermolecular interactions, which are assumed to be non-existent in an ideal gas.

For real gases µJT is a function of temperature and pressure itself (µJT(T, p)) and it can be
positive or negative depending on the conditions. The µJT of real gases formed by small
non-polar molecules depends on pressure and temperature as shown in Figure 2.7, where there
is an “inversion curve” corresponding to the points where µJT = 0. The top and the bottom of
the curve are sometimes referred to as the “upper inversion temperature” and “lower inversion
temperature”. The temperatures and pressures to the left of the inversion curve correspond to
µJT > 0, so the gas cools on isenthalpic expansion. To the right of the curve, µJT < 0 and
isenthalpic expansion warms the gas. As we can see from the figure, the principle of
corresponding states applies here as well, and µJT in terms of reduced temperature and
pressure is approximately the same for real gases of small non-polar molecules.

The sign of µJT can be understood in terms of the dominance of repulsive or attractive
interactions in the gas. The temperature of a gas is related to the average kinetic energy of its
component molecules. If attractive interactions are dominant (Z < 1), then it costs kinetic
energy from the molecules to break away from each other and expand the gas, and therefore
the gas cools on expansion (µJT > 0). If repulsive interactions are dominant (Z > 1) then
moving the molecules apart from each other increases their kinetic energy and the gas warms
on expansion (µJT < 0).
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Figure 2.8: The area under the curves is the amount of work exerted by the gas on the surroundings.
Left: against a constant external pressure. Right: reversible isothermal expansion.

2.10 Thermodynamic Processes in Gases

2.10.1 Expansion Against Constant Pressure

Finally, a few simple calculations of thermodynamic properties are shown in this section
involving gases, to demonstrate the use of the results in this chapter. In the rest of this section,
we consider a closed system composed of a pure gas (sometimes an ideal gas) and only p–V
work.

Consider a process in which a gas expands against a constant external pressure pext. For
instance, the expansion work against the atmosphere of the gases evolved during a reaction.
The work in this process is (Eq. 2.44):

w = −
∫ Vf

Vi

pextdV = −pext

∫ Vf

Vi

dV = −pext(Vf − Vi) = −pext∆V (2.120)

where ∆V = Vf − Vi is the change in gas volume. This work is the area under the p(V ) curve,
shown on the left in Figure 2.8. A particular case of expansion against a constant external
pressure is free expansion, where a gas expands in vacuum and pext = 0. In this case, w = 0,
so a gas does no work by expanding in vacuum.

2.10.2 Reversible Expansion

A reversible process is a process that, under an infinitesimal change in conditions, can be
made to go back from the final to the initial state in a way that leaves both the system and the
surroundings (i.e. the universe) unchanged.

Consider the example of a gas being compressed by a piston, as in Figure 2.2. If the
compression is sudden, the movement of the piston creates vortices in the gas, which destroys
equilibrium because there are unbalanced forces in the system. These vortices also dissipate
some of the work as friction, which means that more work is necessary for the compression to
take place that if they had not been present. As we shall see in the next chapter, this results in
an increase in the entropy of the universe (to be defined later), and therefore this process is not
reversible. If the same compression happens slowly, and the pressure of the gas is
approximately equal to the applied external pressure, the friction from those vortices is smaller.
In the limit of infinitely slow compression, the vortices disappear and the gas pressure is at all
times equal to the external pressure, meaning that the system is always in equilibrium. In this
limit, the process is reversible because an infinitesimal increase or decrease in the external
pressure can make the system either compress or expand without destroying equilibrium.

In general, a reversible process happens through an infinite sequence of equilibrium
states. Since the system has to be in thermodynamic equilibrium at all times, a reversible
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process is quasistatic, meaning that it is infinitely slow. A reversible process is therefore only
an idealization that can only be approximately realized in the limit of infinitely slow proccesses.
A process that is not reversible is known as irreversible.

Reversible processes are very useful for the calculation of thermodynamic properties. Because a
system undergoing a reversible process is always at equilibrium, its thermodynamic state is
always defined (see Section 1.2.3), which means we can consider how its properties (pressure,
temperature, internal energy,...) evolve as it progresses from the initial to the final state. If, for
instance, a system undergoing a reversible process is in contact with its surroundings via a
movable wall, then p = pext because thermodynamic equilibrium implies mechanical
equilibrium. Therefore, the work in a reversible expansion is given by:

dwrev = −pextdV = −pdV (2.121)

Reversible processes are great importance in the rest of the course because the fact that all
thermodynamic properties are defined throughout the process simplifies the calculation of
changes in state functions. Given an initial and final state, we assume that the transformation
between them happens reversibly and then calculate the change in the state function of
interest. Because changes in state functions depend only on the initial and the final states and
not on the process, the state function change calculated using a reversible process is valid for
any process between those specific initial and final states, regardless of whether the process is
reversible or irreversible.

2.10.3 Isothermal Reversible Expansion of an Ideal Gas

We now consider the expansion of an ideal gas at constant temperature (an isothermal
process) that is carried out reversibly. Because the process is reversible and the gas is ideal,

pext = p =
nRT

V
(2.122)

From this, we can calculate the work as:

w = −
∫ Vf

Vi

pdV = −
∫ Vf

Vi

nRT

V
dV = nRT ln

(
Vi

Vf

)
(2.123)

Note that if the process is a compression, Vf < Vi and w > 0 and if the process is an expansion,
Vf > Vi and w < 0. This is consistent with our sign convention that energy gained by the
system is positive and energy lost by the system is negative. We justified the internal energy of
an ideal gas depends only on temperature, so we can anticipate that in an isothermal expansion
∆U = 0 and the work exerted equals the heat absorbed, q = −w.

Figure 2.8 compares the expansion of a gas against a constant pressure with an isothermal
reversible expansion. The amount of work performed by the system on its surroundings, given
by the area under the curve, depends on the path chosen between the initial and final states
because work and heat are not state functions. The work performed by the system in a
reversible expansion is greater than when the gas expands (irreversibly) against a constant
external pressure, when p > pext except at the final state. Because the system pushes harder
than necessary, some energy is lost to friction and the amount of work in an expansion against
constant pressure is not as high as it would be had the expansion been reversible. In fact, the
work exerted in a reversible expansion is greater than in any other expansion since the
reversible expansion p(V ) curve in Figure 2.8 (right) is the maximum possible external pressure
against which the system can expand. Next chapter, we will show that this is a general result
based on the second law of thermodynamics.
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2.10.4 Reversible Adiabatic Expansion of an Ideal Gas

Lastly, we consider an ideal gas undergoing adiabatic expansion. An adiabatic process is one
in which no heat is exchanged between the system and its surroundings (q = 0). Let us first
calculate the change in internal energy (∆U) between the initial conditions (volume Vi and
temperature Ti) and the final conditions (volume Vf and temperature Tf ). Because this is an
ideal gas, U depends on temperature only and therefore:

dU = CV dT (2.124)

Because the process is reversible, we have p = pext at every intermediate step and dw = −pdV ,
so:

dw = −pdV = −nRT

V
dV (2.125)

By the first law and because the process is adiabatic (dq = 0):

dU = dq + dw = dw (2.126)

Combining the equations above, we have:

CV dT = −nRT

V
dV (2.127)

This is a separable differential equation, which we can rearrange to give:

CV

T
dT = −nR

V
dV (2.128)

Integrating between the initial and the final conditions:∫ Tf

Ti

CV

T
dT =

∫ Vf

Vi

−nR

V
dV (2.129)

Assuming CV is approximately constant in the temperature range, we can integrate both sides
of the equation to find:

CV ln

(
Tf

Ti

)
= −nR ln

(
Vf

Vi

)
(2.130)

ln

(
Tf

Ti

)c

= ln

(
Vi

Vf

)
(2.131)

where:
c =

Cv

nR
=

Cv,m

R
(2.132)

Eliminating the logarithms we arrive at:(
Tf

Ti

)c

=

(
Vi

Vf

)
(2.133)

T c
fVf = T c

i Vi (2.134)

Therefore, in the adiabatic reversible expansion of an ideal gas, V T c is constant.

Using the ideal gas law, the relation between pressure and volume can be derived as well. From
the last equation:

Vi

Vf
=

(
Tf

Ti

)c

=

(
pfVf

nR
piVi

nR

)c

=

(
pfVf

piVi

)c

(2.135)
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Figure 2.9: Pressure-volume curves for the isothermal expansion (isotherms) and adiabatic reversible
expansion (adiabats) of an ideal gas. The two adiabats correspond to a monoatomic (γ = 5/3) and a
non-linear polyatomic (γ = 4/3) gas.

Rearranging, we have:

pciV
c+1
i = pcfV

c+1
f (2.136)

piV
γ
i = pfV

γ
f (2.137)

(2.138)

where:
γ = 1 +

1

c
= 1 +

nR

CV
=

CV + nR

CV
=

Cp

Cv
(2.139)

since Cp = CV + nR for an ideal gas (Eq. 2.106). Therefore, for the adiabatic reversible
expansion of an ideal gas, pV γ is constant.

For a monoatomic ideal gas (Eq. 2.13), Cv,m = 3/2R and γ = 5/3. For a small-molecule
non-linear polyatomic ideal gas, it can be shown using statistical thermodynamics that
Cv,m ≈ 3R and γ ≈ 4/3. Figure 2.9 compares the pressure-volume curves for these reversible
adiabatic expansions (these curves are known as adiabats) against the isothermal expansion
p(V ) ∝ 1/V curves of an ideal gas (its isotherms). In an isothermal expansion, heat flows into
the system as the gas expands in order to maintain the temperature constant, and therefore the
pressure does not fall so steeply. In an adiabatic expansion, the gas cools as it expands and the
pressure drops faster than in the isothermal case.
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Chapter 3

The Second Law of Thermodynamics

3.1 Heat Engines and the Second Law of Thermodynamics

The first law is a restatement of the conservation of energy law for thermodynamic systems.
Experience shows that not all processes for which the first law holds are equally likely. For
instance, if you drop a rubber ball from a height, it falls and eventually comes to a stop as its
kinetic energy dissipates as heat due to friction with air and with the ground. We know
intuitively that the opposite process, a ball at rest on the ground that gathers energy from its
surroundings and leaps upwards, is not possible. The second law of thermodynamics states that
some processes, like the ball falling from a height, are spontaneous while others are not. In
addition, the second law allows us to define a new state function called the entropy to quantify
the spontaneity of a physical or chemical transformation. A given process, like a chemical
reaction, is spontaneous if it is thermodynamically allowed to occur. However, this does not
mean that the reaction in question will occur because it could be so slow that, effectively, it
does not take place. An example of this is the conversion from diamond to graphite, graphite
being the thermodynamically stable form of carbon at ambient conditions.

A cyclic process is a process in which the initial and the final state of the system are the
same. Because the internal energy and the enthalpy are state functions, we have that for a
cyclic process:

∆U = ∆H = 0 (3.1)

And using the first law (Eq. 2.7):
q = −w (3.2)

Therefore, for a cyclic process, the amount of heat exchanged with the environment equals
minus the amount of work exerted. A cyclic process either absorbs heat from the environment
and performs work or the surroundings exert work on the system and it releases heat. We
already know from experience that a cyclic process in which the surroundings exert work and
the system releases the same amount of energy as heat is feasible and easy to carry out. For
instance, in the Joule experiment a paddle wheel is stirred in a vat of water and the mechanical
energy applied as work to the paddle is transferred as heat into the water. The water is then
allowed to cool down to room temperature by releasing heat to the surroundings, completing a
cyclic process in which we transformed work into heat. Another example is a household electric
heater that draws work from the surroundings in the form of electrical energy (work) to raise
the temperature of a room by emitting heat to the surroundings.

We are normally interested in the opposite exchange, namely whether and to what extent it is
possible to draw heat from the surroundings and convert it into work. For instance, we want to
convert heat from the sun into usable electrical energy that can be used to exert useful work. A
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Figure 3.1: A heat engine. The system undergoes a cyclic process whose only effects are: draw qh > 0
energy from a hot source (with temperature Th) as heat, transfer qc < 0 to the cold sink (with temperature
Tc < Th) also as heat, and exert work w < 0 on the surroundings.

heat engine is a system that undergoes a cyclic process that converts heat into work. A
schematic representation of a heat engine is shown in Figure 3.1. A heat engine is connected to
a “hot source”, which we assume to be at temperature Th, from where it draws an amount of
energy qh as heat. Since the process in a heat engine is cyclic, ∆U = 0, and the first law states
that the energy entering the system equals the energy released from it. The energy escaping the
system can do so in two ways: either as heat transferred to a “cold sink” (qc) at temperature
Tc < Th, or as work exerted on the surroundings w. The heat and work are related by:

∆U = q + w = qc + qh + w = 0 (3.3)

Note that, with our sign convention, energy gained by the system is positive and energy lost by
the system is negative, so qh > 0, qc < 0, and w < 0.

There are many examples of engineering processes of industrial relevance that can be
represented by heat engines. For instance, in a steam engine or in a thermal power plant, the
system (the working fluid, usually water) draws heat from the boiler (the hot source) and
transforms it into work by evaporating and pushing a piston or a turbine. The low-pressure
vapor is released to the atmosphere (the cold sink) whereby it is cooled down and liquefied and
returns to the system as liquid water.

Heat engines can also be made to work in reverse. In this case, the arrows in Figure 3.1 are
reversed and heat is absorbed from the cold reservoir (qc > 0) and work is exerted by the
surroundings on the system (w > 0). The system then releases an equivalent amount of heat
(qh < 0) to the hot reservoir. The three quantities are also related by Eq. 3.3. This is what is
known as a heat pump. A practical example of such a machine is a refrigerator, where the
refrigerant fluid transfers heat from the inside of the fridge to the outside, while work is exerted
on the fluid by the compressor.

The second law of thermodynamics states that it is impossible to have a cyclic
process whose only effect is to absorb heat from a source and perform the same
amount of work on the surroundings. This is the Kelvin statement of the second law.
In a heat engine (Figure 3.1) the second law states that it is necessary to transfer part of the
heat absorbed from the hot source to the cold sink, that is, qc cannot be zero. An alternative is
the Clausius statement of the second law, which says that it is impossible to have a
cyclic process whose only effect is to absorb heat from a cold reservoir and release
an equal amount of heat to a hot reservoir. In Figure 3.1, such a process would have the
directions of qc and qh reversed and w = 0.
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Figure 3.2: Heat engines that illustrate violations of the second law. Left: the orange system violates
the Kelvin statement and the combination of the two heat engines violates the Clausius statement. Right:
the orange system violates the Clausius statement and the combination of the two heat engines violates
the Kelvin statement.

The equivalence of the Clausius (C) and Kelvin (K) statements of the second law can be proven
by contradiction. To show that the Clausius statement implies the Kelvin statement
(C =⇒ K), we assume that K is violated and show that this implies a violation of C. If K is
violated, then a heat engine exists whose only effect is to convert heat into work. Figure 3.2
(left) shows a schematic representation of this heat engine. The orange engine violates K and,
since the net effect of the combined engine is to draw q2 from the cold reservoir and deposit q2
into the hot reservoir, it violates C. Conversely, if C is violated, a heat engine exists whose only
effect is a heat flow from the cold to the hot reservoir. Figure 3.2 (right) shows that we can
combine this heat engine, shown in orange, with another regular heat engine to give a
combined engine whose net effect is to draw q2 > q1 heat from the hot source and transform it
into work, thus violating the Kelvin statement.

3.2 Carnot’s Principle

We define the efficiency (e) of a heat engine as the fraction of the input energy that is
converted into work. The second law as stated above says that the efficiency of a heat engine
can never be 100%. As we now prove, the theoretical efficiency limit of a heat engine is lower,
and depends only on the temperatures of the hot and the cold reservoirs. Using the notation in
Figure 3.1, the efficiency of a heat engine is calculated as:

e =
−w

qh
=

|w|
qh

=
qh + qc

qh
= 1 +

qc
qh

(3.4)

Note that w < 0, qc < 0, and |qc| < |qh|, so e is a positive quantity between 0 and 1. In
addition, the second law ensures that there is some heat transferred to the cold sink, so qc
cannot be zero, which means that the efficiency can never be 100% (e < 1).

The heat engine in Figure 3.1 operates between the temperatures of the hot and cold reservoirs,
Th and Tc, respectively. The Carnot principle states that any heat engine has efficiency
lower than a reversible heat engine operating between the same two temperatures:

e ≤ erev (3.5)

The Carnot principle, which is a consequence of the second law, implies that the maximum
amount of work that can be performed by a heat engine is a fraction of the energy drawn from
the hot reservoir, and this fraction is given by the efficiency of a reversible heat engine.
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Figure 3.3: Diagram for proving Carnot’s principle. The heat engine on the left is reversible and acts as
a heat pump. The heat engine on the right has efficiency higher than the reversible engine. Both engines
work between the temperature of the hot source (Th) and the temperature of the cold sink (Tc).

To prove Carnot’s principle, we first assume the existence a super-engine that violates the
principle and show that this violates the second law. The efficiency of the super-engine is
higher than that of a reversible engine (erev < esuper). Consider a super-engine that draws qh
heat from the hot source and exerts wsuper = −esuperqh work, as shown in Figure 3.3. We
combine this super-engine with a reversible heat engine that draws qh from the hot source and
exerts wrev = −erevqh on the surroundings. Because this engine is reversible, we can reverse its
cyclic process and make it act as a heat pump with the same heat and work being transferred
to and from the surroundings, but with opposite signs. This reversible heat pump is combined
with the super-engine as shown in Figure 3.3. The amount of work required by the reversible
heat engine is less than the work provided by the super-engine because:

|wrev| = erev|qh| < esuper|qh| = |wsuper| (3.6)

Therefore, there is an extra amount of work:

|wextra| = |wsuper| − |wrev| (3.7)

that is left-over from the operation of the combined engine in Figure 3.3. Since the
super-engine draws the same energy from the hot source as the energy deposited by the
reversible engine, the hot source transfers no net energy to the engine. Applying the first law,
this means that the net effect of the combined heat engine in the figure is to draw heat from
the cold sink and convert it into work, which violates the Kelvin statement of the second law.

A consequence of the Carnot principle is that the efficiency of any reversible heat engine
operating between the same two temperatures is erev, regardless of the substance used in its
construction. If we have two reversible engines (A and B) that are constructed differently,
Carnot’s principle (Eq. 3.5) can be applied by considering either of them as the reversible
engine on the left of Figure 3.3, so eA ≤ eB and eB ≤ eA and therefore eA = eB.

Another corollary of the Carnot principle is that the efficiency of a reversible engine depends
only on the two working temperatures Tc and Th. We now find this dependence. Since any
reversible engine has the same efficiency, we can construct a reversible engine using a substance
whose behavior is known, such as an ideal gas doing p-V work, and the result will be valid for
all reversible engines regardless of their construction. This system is shown Figure 3.4 and is
known as the Carnot cycle. The Carnot cycle consists of four steps:
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Figure 3.4: A schematic diagram of a Carnot cycle. The 1 → 2 and 3 → 4 paths are reversible isothermal
(p = nRT/V ) and the 2 → 3 and 4 → 1 are reversible adiabatic (pV γ = constant).

1. Reversible isothermal expansion at temperature Th (1 → 2).

2. Reversible adiabatic expansion from Th to Tc (2 → 3).

3. Reversible isothermal compression at temperature Tc (3 → 4).

4. Reversible adiabatic compression from Tc to Th (4 → 1).

Since the whole process is reversible (p = pext), we can write the internal energy as:

dU = dq + dw = dq − pdV (3.8)

and because this is an ideal gas, U depends only on temperature, so dU = CV dT and:

CV dT = dq − pdV = dq − nRT

V
dV (3.9)

Now we do the path integral of these differentials over the whole cycle. In order to simplify the
calculation, we divide the whole equation by the temperature first:

CV

T
dT =

dq

T
− nR

V
dV (3.10)

Integrating over the Carnot cycle gives:∮
CV

T
dT =

∮
dq

T
− nR

∮
dV

V
(3.11)

The path integral on the left hand side can be written as the path integral over the four paths
that compose the cycle (Figure 3.4):∮

CV

T
dT =

∫ 2

1

CV

T
dT +

∫ 3

2

CV

T
dT +

∫ 4

3

CV

T
dT +

∫ 1

4

CV

T
dT (3.12)

The system is an ideal gas, so U depends on T only and, since CV is its temperature derivative,
CV depends on T only as well. Therefore, these four path integrals reduce to one-dimensional
integrals between the initial and the final temperatures of each step:∮

CV

T
dT =

∫ T2

T1

CV

T
dT +

∫ T3

T2

CV

T
dT +

∫ T4

T3

CV

T
dT +

∫ T1

T4

CV

T
dT (3.13)

Using the properties of integrals: ∫ b

a
f(x)dx = −

∫ a

b
f(x)dx (3.14)∫ b

a
f(x)dx+

∫ c

b
f(x)dx =

∫ c

a
f(x)dx (3.15)
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the right hand side of Eq. 3.12 cancels out to find:∮
CV

T
dT = 0 (3.16)

Likewise, the integrand of the second term on the right hand side of Eq. 3.11 is the exact
differential of the state function lnV , so:

nR

∮
dV

V
= nR

∮
d lnV = 0 (3.17)

Putting both results together, we find:∮
dq

T
= 0 =

∫ 2

1

dq

T
+

∫ 3

2

dq

T
+

∫ 4

3

dq

T
+

∫ 1

4

dq

T
(3.18)

The paths 2 → 3 and 4 → 1 correspond to adiabatic transformations, so dq = 0. The other two
are isothermal, and the temperature comes out of the integral. Path 3 → 4 corresponds to the
system at temperature Tc and the heat exchanged with the surroundings (cold sink) is qc. Path
1 → 2 corresponds to the system at temperature Th and the heat exchanged with the
surroundings (hot source) is qh. Therefore:

qh
Th

+
qc
Tc

= 0 (3.19)

qc
qh

= −Tc

Th
(3.20)

so the efficiency of the Carnot cycle is (Eq. 3.4):

erev = 1 +
qc
qh

= 1− Tc

Th
=

Th − Tc

Th
(3.21)

and, since all reversible heat engines have the same efficiency, this result is valid for any
reversible heat engine regardless of its nature. (In fact, the efficiency of a reversible heat engine
can be used to define a temperature scale that does not depend on any substance, identical to
the thermodynamic temperature scale we are already using.)

The maximum efficiency of any heat engine working between temperatures Tc and Th is given
by Eq. 3.21, and this result applies to any engine. For instance, power plants that operate on
steam (coal, natural gas) have boiler temperatures of about 550 ◦C. The condenser (for
instance, a cooling tower) may be at 40 ◦C. The maximum efficiency of a heat engine between
those two temperatures is:

e =
823.15K− 313.15K

823.15K
= 0.62 (3.22)

At most a fraction of 62% of the heat generated by the combustion of coal or gas ends up
converted into electrical work. The existence of friction in the various components as well as
energy loss to the surroundings causes irreversible behavior in the heat engine, which makes the
actual efficiency lower than the theoretical value, about 40%. The efficiency in the generation
of electricity can be increased substantially by using the exhaust steam to power additional
heat engines (the so-called combined cycle power plants), although it can never go above the
Carnot limit.

3.3 Entropy

3.3.1 Definition and Properties

Equation 3.18 shows the differential dq
T is zero over any closed Carnot cycle. In fact, this result

can be generalized to any reversible cyclic process, as shown in Figure 3.5. Consider the
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Figure 3.5: Left: an arbitrary reversible cyclic process (1→1, black curve) approximated by four Carnot
cycles. Right: Another reversible cyclic process approximated by many small Carnot cycles. Red lines
are isotherms and blue lines are adiabats. The black cycle can be approximated as the sum of all the
Carnot cycles in green. If we consider even more isotherms and adiabats, the green region converges to
the cycle in black.

reversible cycle on the left of the figure, in which the initial and the final state are the point 1.
This cycle can be approximated by the combination of four Carnot cycles, determined by the
shown isotherms (red) and adiabats (blue). The process following the Carnot cycles that
approximates the black curve is: 1 → 2 → 10 → 3 → 4 → 5 → 10 → 5 → 6 → 8 → 10 → 7
→ 11 → 12 → 9 → 12 → 1. Note that, if you follow this path, every interior segment is
traversed twice in opposite directions. Because the process is reversible, the heat and work
from these interior segments cancel out and the resulting heat and work from the cycle comes
only from the contributions of the outer segments. If we consider even more isotherms and
adiabats and more numerous but smaller Carnot cycles, we can approximate the reversible
process with as much accuracy as we want. For instance, Figure 3.5 (right) shows the same
reversible cyclic process approximated by the combination of Carnot cycles shaded in green. If
we consider infinitely many isotherms and adiabats, the green region can be made to coincide
with the interior of the cycle. Therefore, we can represent this cycle, or any other reversible
cycle, by a combination of Carnot cycle steps and consequently:∮

dqrev
T

= 0 (3.23)

for any arbitrary reversible cycle, where we used the label “rev” to emphasize that the cyclic
process is reversible. Since this equation is valid for any closed cycle, by the result in
Section 2.3.2, a state function exists whose exact differential is dqrev/T . We call this state
function the entropy (S):

dS =
dqrev
T

(3.24)

To calculate the change in entropy between an initial state i and a final state f , we consider a
reversible process between those two states, and calculate the corresponding path integral:

∆S =

∫ f

i

dqrev
T

(3.25)

The entropy difference calculated in this way is correct even if the process leading from the
initial to the final state is irreversible, because S is a state function and therefore ∆S depends
only on the initial and the final states, and not on the path followed by the system.
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Figure 3.6: The red path is an irreversible adiabatic transformation between states 1 and 2. This
transformation occurs via non-equilibrium states of the system, so the path shown in the figure is only
for guidance since V and p may not be defined except at 1 and 2. The same transformation can be done
reversibly using a combination of reversible adiabatic and isothermal paths (in black).

The entropy has units of energy divided by temperature, J/K in the SI although cal/K are also
used. The entropy is extensive because the reversible heat transferred depends on the size of
the system. Same as for the other extensive quantities, we can define a molar entropy as:

Sm =
S

n
(3.26)

with units of J/K/mol or cal/K/mol, which is itself intensive. In addition, we can also define a
standard entropy (S◦) as the entropy of a substance in its standard state, and the standard
molar entropy (S◦

m) as the standard entropy divided by the amount of substance. Like
temperature, entropy is a statistical property—only macroscopic systems have entropy.

To understand the physical meaning of the entropy, consider a reversible transformation in a
closed system. The heat absorbed by the system is the same as the heat released by the
surroundings but with opposite sign dqsyst = −dqsurr and, since the transformation is reversible,
system and surroundings are in equilibrium at all times, so Tsyst = Tsurr. Therefore the change
of entropy of the universe brought about by the reversible transformation is:

dSuniv = dSsyst + dSsurr =
dqsyst

Tsyst
+

dqsurr

Tsurr
=

dqsyst

Tsyst
− dqsyst

Tsyst
= 0 (3.27)

Consequently, the entropy of the universe does not change when a reversible process takes place:

∆Suniv = 0 (reversible process) (3.28)

Now let us consider an adiabatic irreversible process occurring in a closed system, such as the
one shown in red in Figure 3.6. To calculate the ∆S = S2 − S1 for this process, we build a
reversible process comprising a reversible adiabatic compression (1 → 4), a reversible
isothermal expansion (4 → 3), and a reversible adiabatic expansion (3 → 2). Since S is a state
function, the ∆S for this reversible process is the same as for the irreversible process:

∆S = S2 − S1 =
�

�
��

∫ 4

1

dq

T
+

∫ 3

4

dq

T
+
�

�
��

∫ 2

3

dq

T
=

q4→3

T
(3.29)

where we used that dq = 0 in an adiabatic process and that T is constant in an isothermal
process. For the cyclic process consisting of the 1 → 2 → 3 → 4 → 1,∮

dU = 0 = q + w (3.30)
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But all steps other than 3 → 4 are adiabatic so q = q3→4:∮
dU = 0 = q3→4 + w (3.31)

and step 3 → 4 is reversible, so q3→4 = −q4→3. Rearranging:

w = q4→3 (3.32)

If w < 0, then q4→3 < 0 and q3→4 > 0, so the only effects of cyclic process 1 → 2 → 3 → 4 → 1
would be to draw heat from the source at temperature T in step 3 → 4 and convert it into work,
which is exerted on the surroundings. This would violate the Kelvin statement of the second
law of thermodynamics. Therefore it must be that w ≥ 0, q4→3 ≥ 0. Substituting in Eq. 3.29:

∆S ≥ 0 (3.33)

for any adiabatic process in a closed system. If the process 1 → 2 is reversible, then:

∆S =

∫ 2

1

dqrev
T

= 0 (3.34)

because 1 → 2 is also adiabatic, and therefore ∆S = q = w = 0 corresponds to the case when
the 1 → 2 process is reversible.

Since all processes in an isolated system are adiabatic, the equation above is also applicable to
any process in an isolated system, so the entropy in an isolated system always increases.
An isolated system may undergo several irreversible transformations, each of them increasing
its entropy. Once the maximum entropy of the isolated system has been reached, no further
spontaneous transformations are possible. Therefore, an isolated system is at
thermodynamic equilibrium when its entropy is maximized. The universe is an
isolated system, so any process must increase the entropy of the universe. Because S is an
extensive property, this means that:

dSuniv = dSsyst + dSsurr ≥ 0 (3.35)

Now let us consider a closed system that is in thermal equilibrium with its surroundings and
undergoes an isothermal process. Whenever an isothermal process is considered, we can assume
that the surroundings act as a thermal reservoir. A thermal reservoir is an idealized system
with constant temperature T and infinite heat capacity and thermal conductivity, such that it
is able to transfer any heat to or from the system instantly, without changing its temperature
or losing its internal thermal equilibrium. In the lab, a thermal reservoir may be approximated
by a large water bath at controlled temperature. Lakes and oceans are example of thermal
reservoirs in nature.

As a consequence of being in contact with a thermal reservoir, our system is undergoing an
isothermal process in which it is exchanging heat with its surroundings dqsyst = −dqsurr at
constant temperature T , perhaps as a consequence of an irreversible process occurring in the
system (for instance, a chemical reaction). Because the surroundings are always in thermal
equilibrium at the same temperature, they undergo isothermal reversible change and therefore:

dSsurr =
dqsurr,rev

T
=

dqsurr

T
= −dqsyst

T
(3.36)

Note, in passing, that if the surroundings act as a thermal reservoir then Tsurr do not change
during the process, and therefore:

∆Ssurr =
qsurr

Tsurr
(3.37)
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ϵA ϵB ϵC
5 0 0
4 1 0
4 0 1
3 2 0

. . .

Figure 3.7: Left: a system of three distinguishable non-interacting particles has an internal energy
U = 5. Right: each row in the table is a possible microstate of the system in which the 5 units of energy
are distributed among the energies (ϵ) of the three molecules.

which allows the calculation of the entropy change in the surroundings for an isothermal
process.

Substituting Eq. 3.36 in Eq. 3.35, we find:

dSsyst −
dqsyst

T
≥ 0 (3.38)

Rearranging and dropping the subindices:

dS ≥ dq

T
(3.39)

This is known as the Clausius inequality, valid for a closed system in thermal equilibrium
with its surroundings. The equality of dS and dq/T happens only in the case of a reversible
process (Eq. 3.24), as shown before. For an irreversible process, entropy is created relative to
dq/T . This inequality will be very important when we examine the spontaneity of chemical
reactions.

3.3.2 Interpretation

Microscopically, the entropy is a measure of the number of microscopic states (microstates)
available to the system in its current thermodynamic state. An example illustrating the
concept of microstate is shown in Figure 3.7. This system contains only three distinguishable
non-interacting molecules (A, B, and C) that can only have integer energies ϵ = 0, 1, 2, . . .. The
total energy of the system is U = 5, and this energy can be distributed in different ways over
the available molecular energy levels, as shown in the table. Each of these distributions is a
different microstate compatible with the thermodynamic state of the system (U = 5).

In statistical thermodynamics, the entropy of an isolated system is given by the Boltzmann
equation:

S = kB lnΩ (3.40)

where kB = R/NA is Boltzmann’s constant and Ω is the number of microstates compatible
with the current thermodynamic state of the system. In the example shown in Figure 3.7, Ω
would be the number of rows in the table, corresponding to the number of ways in which 5 can
be written as a sum of three non-negative integers. As can be seen in the example, there are
many microstates for a given thermodynamic state. In a system with a realistic number of
molecules, Ω is much, much larger.

Going back to the Boltzmann equation (Eq. 3.40), the fact that an isolated system achieves
thermodynamic equilibrium when its entropy is maximized means that the system tends to
occupy the thermodynamic state with most microstates available. This can be also justified on
statistical grounds with a few simple examples.
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Figure 3.8: Left: a compartmentalized box with ordered buttons. Right: the same set of buttons after
shaking the box.

First, consider a box with differently colored buttons separated in compartments, as shown on
the left in Figure 3.8. If we take this box and shake it in such a way that the buttons may
move between compartments, then a distribution of the buttons like the one on the right of the
figure may be obtained. It is very unlikely that if we shake the box we will obtain a perfectly
ordered distribution of buttons. This is not because any of the disordered button arrangements
is more likely than any of the ordered ones; it is simply because there are many more ways to
arrange the buttons in a disordered than in an ordered fashion. In this analogy, our system has
two thermodynamic states: ordered and disordered. The disordered thermodynamic state has
more microstates (different arrangements of the buttons) than the ordered state. Therefore, the
equilibrium state of the system is the disordered state. If we want the system to be in the
ordered state, we have to exert work on the system by ordering the buttons ourselves. In other
words, the process of shaking the box is irreversible because it leads to an increase in entropy.

A more physical example is provided by the isothermal entropy of mixing of two ideal gases,
illustrated in Figure 3.9. In the initial state (top left), two gases A (red) and B (green) with
amounts na and nb and volumes Va and Vb are at the same pressure (p) and temperature (T )
and separated by an impermeable wall. Now we remove the wall and the two gases expand and
mix with each other irreversibly and isothermally, such that the final state has the same
pressure and temperature but now the two gases occupy a volume Va + Vb (top right). To
calculate the entropy change in this process, we consider an equivalent reversible process in two
steps. Assume the wall is actually composed of two semipermeable walls, shown as red and
green in Figure 3.9. The red wall is permeable to A and the green wall is permeable to B. In
the first step, we reversibly move the red wall to the right, allowing A to expand to the whole
the box. In the second step, we move the green wall reversibly to the left, allowing B to expand
and reaching the final state.

Since the gases are ideal, their molecules do not interact with each other and therefore the
entropy change in both reversible steps corresponds to the isothermal reversible expansion of
each gas to a volume of V = Va + Vb. For an isothermal reversible expansion, the work for gas
A in the first step is (Eq. 2.123):

wrev = naRT ln

(
Va

Va + Vb

)
(3.41)

and, since U depends only on T in an ideal gas and the expansion is isothermal, dU = 0, so:

qrev = −w = naRT ln

(
Va + Vb

Va

)
(3.42)

The entropy change for the expansion of gas A is (Eq. 3.25)

∆SA =

∫ f

i

dqrev
T

=
qrev
T

= naR ln

(
Va + Vb

Va

)
(3.43)
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Figure 3.9: Mixing of two ideal gases. Left: two ideal gases at the same pressure (p) and temperature
(T ) are separated by an impermeable wall, and the whole system is in thermal contact with a heat bath
at temperature T . Right: the gases are mixed and at the same temperature and pressure. A reversible
process between the same initial and final states can be set up by considering there are two walls: one
permeable only to gas A (red) and one permeable only to gas B (green). First, we move the red wall
reversibly to the right, which allows A to occupy the whole box. Then, we move the green wall reversibly
to the left, reaching the final state.

and likewise for gas B:

∆SB = nbR ln

(
Va + Vb

Vb

)
(3.44)

so the entropy associated with the mixing of the gases is:

∆mixS = ∆SA +∆SB = naR ln

(
Va + Vb

Va

)
+ nbR ln

(
Va + Vb

Vb

)
(3.45)

Because the gases are ideal,

pVa = naRT (3.46)
p(Va + Vb) = (na + nb)RT (3.47)

Va

Va + Vb
=

na

na + nb
= xa (3.48)

and the equivalent expression applies to gas B. Therefore, the entropy of mixing (Eq. 3.45) is:

∆mixS = −naR lnxa − nbR lnxb (3.49)

Note that for any mole fraction other than 0 and 1 (i.e. pure gases), the change in entropy is
positive. As in the case of the box with buttons, this indicates that the system has more
microstates available in the final than in the initial state. In fact, all microstates of the initial
state are possible microstates of the final state, corresponding to a situation in which each of
the two gases separates spontaneously into either of the two halves of the container. Being
ideal gases, this does not violate the first law but it is extremely unlikely to occur because there
are overwhelmingly many more microstates in which the two gases are mixed and molecules of
either gas are spread over the whole container.
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The last two examples illustrate why entropy is commonly understood as a measure of
“disorder” in the system. This is somewhat correct but disorder is ill-defined and not
quantifiable. It is best to think of entropy as a measure of the number of microscopic
configurations available to a system in its current thermodynamic state, as given by the
Boltzmann equation (Eq. 3.40). Note also that the second law of thermodynamics is
probabilistic in nature. The entropy of an isolated system could in principle decrease
spontaneously but this is extremely unlikely.

Because the universe is an isolated system, the entropy of the universe must always increase.
The creation of entropy in the universe is one of the few physical phenomena that is not
invariant with respect to a time reversal. For instance, if we drop a ball from a height, it will
bounce until all its kinetic energy is dissipated due to friction. Nothing in Newton’s equations
or the first law prevents the reverse movement from happening. The ball could acquire energy
from the surroundings by collisions with air and ground molecules and bounce up to its original
position, then remain at rest. We consider this event impossible because it would decrease the
entropy of the universe. The fact that entropy increases constantly with time gives time a
direction, allowing the distinction between cause and effect and between past and future events.

3.4 Calculation of Entropy Changes

The definition of entropy is (Eq. 3.24):

dS =
dqrev
T

(3.50)

To calculate the change in entropy for a particular process, we first consider a reversible process
between the same initial and final states. The entropy change can be calculated as a path
integral over the exact differential:

∆S =

∫ 2

1

dqrev
T

(3.51)

and, since S is a state function and ∆S depends only on the initial and the final states, this
result is valid for any process, reversible or irreversible, between those two states. We have seen
an example of this procedure in the last section when we calculated the entropy of mixing of
two gases by considering a reversible mixing. A few more examples follow.

Cyclic process. For a cyclic process, the initial and final states are the same, so ∆S = 0.

Reversible process. In a reversible process, dq = dqrev, so:

∆S =

∫ 2

1

dq

T
(3.52)

In the case of an adiabatic reversible process, dq = 0 and ∆S = 0. For a reversible isothermal
process, T is constant, and the equation above reduces to:

∆S =
q

T
(3.53)

As discussed above, the entropy of the surroundings can always be calculated in this way if the
system is kept at constant temperature because we assume that the surroundings behave as a
thermal reservoir, and therefore always undergo reversible isothermal change.
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Ideal gas. In a pure ideal gas, the thermodynamic state is determined by two variables, for
instance by V and T . For a process between (V1, T1) and (V2, T2), we first assume the process is
reversible, so:

dqrev = dU − dwrev = CV dT + pdV = CV dT +
nRT

V
dV (3.54)

where we used that U is a function of T only, the definition of constant-volume heat capacity
(Eq. 2.48), that in a reversible process p = pext, and the ideal gas law. The entropy differential
is:

dS =
dqrev
T

=
CV

T
dT +

nR

V
dV (3.55)

and integrating, we find:

∆S =

∫ T2

T1

CV

T
dT +

∫ V2

V1

nR

V
dV =

∫ T2

T1

CV

T
dT + nR ln

(
V2

V1

)
≈ CV ln

(
T2

T1

)
+ nR ln

(
V2

V1

)
(3.56)

where in the last step we assumed CV is approximately constant in the considered temperature
range. (It is possible to turn the path integral into two separate one-dimensional integrals
because the function accompanying dT depends on T only and the function with dV depends
on V only.) This result shows that increasing the volume or the temperature of an ideal gas
increases its entropy. In particular, note that in an adiabatic free expansion of an ideal gas
against vacuum q = w = ∆U = ∆H = 0 but ∆S > 0, and this process is irreversible.

Heating with no phase change. If the system is heated and no phase change takes place,
then ∆S can be calculated from the heat capacity. For instance, if the heating is at constant
pressure, we assume it is reversible, so dqrev = dqp = dH = CpdT and:

dS =
dqrev
T

=
CpdT

T
(3.57)

so the constant-pressure heat capacity is:

Cp = T

(
∂S

∂T

)
p

(3.58)

Integrating the equation above, we calculate the entropy change as:

∆S =

∫ 2

1

dqrev
T

=

∫ T2

T1

Cp

T
dT ≈ Cp ln

(
T2

T1

)
(3.59)

where in the last equation we assumed Cp is approximately constant with temperature.

If the heating occurs at constant volume, then dqrev = dqp = dU = CV dT and:

dS =
dqrev
T

=
CV dT

T
(3.60)

so the constant-volume heat capacity is:

CV = T

(
∂S

∂T

)
V

(3.61)

and the entropy change is:

∆S =

∫ 2

1

dqrev
T

=

∫ T2

T1

CV

T
dT ≈ CV ln

(
T2

T1

)
(3.62)
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Phase transitions at constant temperature and pressure. In pure substances, phase
transitions at constant pressure also occur at a constant temperature. The normal transition
temperature is the temperature at which the two phases are in equilibrium at 1 atm and the
similar standard transition temperature is the temperature at which they are in
equilibrium at 1 bar.

As before, the entropy change can be calculated by assuming the phase transition is reversible.
Since it also happens at constant pressure, dqrev = dqp = ∆trsH and because it happens at
constant temperature as well:

∆S =

∫ 2

1

dqrev
T

=
∆trsH

T
(3.63)

Therefore, a phase change increases the entropy of the system if it is endothermic (e.g. melting
a solid or evaporating a liquid) and decreases the entropy if it is exothermic (condensation and
freezing).

Example. The entropy for the melting of 5.0 g of ice (with ∆fusH = 79.7 cal/g) at 0 celsius and
1 atm is:

∆S =
∆fusH

T
=

(79.7 cal/g)× (5.0 g)

273K
= 1.46 cal/K

In the particular case of the entropy of vaporization, it has been empirically determined that
the ∆vapSm of many liquids at their normal boiling point is approximately the same, and equal
to 10.5R = 87.3 J/K/mol. This is known as Trouton’s rule, and comes from the fact that all
gases have approximately the same molar volume. It does not work very well for polar liquids
(for instance, water has ∆vapSm = 109.1 J/K/mol) and for liquids with a very low or very high
boiling point, and more accurate generalizations exist. Note that because of Eq. 3.63 we have
that ∆vapH = T∆vapS(Tvap), and therefore Trouton’s rule also says that the enthalpy of
vaporization of a liquid is ∆vapH = 10.5RTvap where Tvap is the normal boiling point. The
∆vapH is a measure of the strength of the intermolecular interactions in the liquid, and
typically has values between 20 and 50 kJ/mol at the normal boiling point for substances that
are liquids at room temperature.

3.5 The Third Law of Thermodynamics and Conventional
Entropies

Within classical thermodynamics, there is no way of assigning an absolute value for the entropy
since the entropy is defined by its differential (Eq. 3.24), so the entropy is only known up to an
arbitrary constant and only entropy differences (∆S) can be calculated. However, it is
customary to define conventional entropies by assigning a more or less arbitrary value to
certain systems. The convention used is based on two principles: Boltzmann’s equation and
Nernst’s heat theorem.

Using Boltzmann’s equation (Eq. 3.40) it is possible to calculate the entropy of any system in a
given thermodynamic state by computing the number of associated microstates. In the
particular case when temperature tends to zero T → 0, the system does not have enough
thermal energy to populate anything other than the lowest-energy state (the ground state).
In the limit of T = 0, atoms and molecules crystallize in an ordered lattice corresponding to a
single ground-state, so Ω = 1 and S = 0. (Although Ω = 1 at T = 0 for most substances, an
exception occurs when the ground state has more than one microstate associated with it if, for
instance, there are several energy-equivalent arrangements in the crystalline state. For
example, the protons in ice can jump between both sides of the hydrogen bond even at T = 0,
resulting in a residual molar entropy of 3.4 J/K/mol. This is why in the following we require
that the substances are perfectly ordered.)
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The second observation we need to define conventional entropies is Nernst’s heat theorem,
which states that the ∆S of any isothermal process tends to zero as T → 0, provided all
substances involved are perfectly ordered. Nernst’s heat theorem is an empirical result based
on low-temperature calorimetric experiments.

Putting together Nernst’s heat theorem and Boltzmann’s equation suggests the convention that
the standard entropy of all elements in their reference state at T = 0 is zero:

S◦
0(element, reference state) = 0 (3.64)

Remember that the reference state of an element is the pure element in its most stable form at
1 bar and, in this case, at T = 0. All elements under those conditions are ordered crystalline
solids except for He, which is a liquid.

For a given substance, we can always consider the process in which the compound is formed
from the corresponding elements in their reference states at zero temperature. Nernst’s heat
theorem ensures that the entropy change for this process, which is the standard formation
entropy at zero temperature (∆fS

◦
0), is zero. The formation can be written as:

∆fS
◦
0 = S◦

0(compound)−
elements∑

i

νiS
◦
0(i, reference state) = S◦

0(compound) (3.65)

because by convention S◦
0(i, reference state) = 0. Therefore, S◦

0(compound) = ∆fS
◦
0 = 0 by

application of Nernst’s heat theorem.

All compounds are solids or liquids at zero temperature and, for solids and liquids, the
standard superscript (◦) means that they are pure and at 1 bar. Consider the process in which
we change the pressure of the substance at T = 0. Nernst’s theorem also applies to this change,
and therefore ∆S = 0 and the entropy of a compound at zero temperature and any pressure is
also zero, so we can drop the standard superscript. In summary, all substances with perfectly
ordered structures at zero temperature have zero entropy:

S0(compound) = 0 (3.66)

which is the statement of the third law of thermodynamics.

The convention regarding the value of the entropy at absolute zero allows the determination of
conventional entropies. The calculation of the conventional entropy of a compound at
temperature T is carried out by starting with the compound at T = 0, at which S = 0 and then
using (Eq. 3.59):

S(T2) = S(T1) +

∫ T2

T1

Cp

T
dT (3.67)

for temperature ranges where there is no phase change and (Eq. 3.63):

∆trsS = ∆S(Ttrs) =
∆trsH

T
(3.68)

for the change in entropy during a phase transition.

Standard conventional molar entropies (S◦
m), often called simply standard molar entropies, are

extensively reported in thermodynamic tables. For instance, the S◦
m of a few substances at

room temperature are, in J/K/mol: 5.7 (graphite), 2.4 (diamond), 69.9 (water), 186.3
(methane), 213.7 (CO2). Diamond has the lowest standard molar entropy at room temperature
of any known substance.

As in the case of the standard enthalpies of formation in the previous chapter, the experimental
determination of conventional entropies of ions is difficult because a solution of only cations or
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only anions cannot be prepared. For the conventional entropies of ions, we make the additional
convention that the standard conventional entropy of protons in aqueous solution is zero at all
temperatures:

S◦(H+, aq) = 0 (3.69)

With this convention, the entropies of the various ions can be positive or negative, depending
on whether they give more or less structure to the solvent around them. For instance,
S◦
m(Cl–, aq) = 57 J/K/mol and S◦

m(Mg2+, aq) = −128 J/K/mol, indicating that the water
molecules around the Cl– anion are less structured (less ordered) than around a proton and the
water molecules around a Mg2+ cation are more structured than around a H+ cation. Small,
highly charged ions in solution induce more structuring of the solvent than large, singly
charged ions, and they have correspondingly lower entropies.

3.6 Reaction Entropies

Lastly, we define reaction entropies in exactly the same way we did for reaction enthalpies. For
a chemical reaction:

0 →
∑

i νi Xi (3.70)

the standard reaction entropy is the difference between the conventional molar entropies of
the pure products and the pure reactants separated and in their standard states:

∆rS
◦ =

∑
i

νiS
◦
m(i) (3.71)

Almost always, ∆rS
◦ > 0 if there is a net generation of gases in the reaction and ∆rS

◦ < 0 if
there is a net consumption of gases in the reaction. As in the case of the reaction enthalpies
and internal energies, we can use Hess’ law to calculate the reaction entropy from other known
reaction entropies. For instance:

∆rS
◦ =

∑
i

νi∆fS
◦(i) =

∑
i

νi∆cS
◦(i) (3.72)

where ∆fS
◦(i) are the standard formation entropies and ∆cS

◦(i) are the standard combustion
entropies.

The dependence of the standard reaction entropy with temperature can be calculated by
substituting Eq. 3.59 in the definition (Eq. 3.71):

∆rS
◦(T2) = ∆rS

◦(T1) +

∫ T2

T1

∆rC
◦
p,m

T
dT ≈ ∆rS

◦(T1) + ∆rC
◦
p,m ln

(
T2

T1

)
(3.73)

where in the last step we assumed the heat capacities are approximately constant in the
considered temperature range. Note the similarity between this result and Kirchhoff’s law.
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Chapter 4

Material Equilibrium

4.1 Phase and Reaction Equilibrium

The second law states that any process that decreases the entropy of the universe is impossible:

∆Suniv = ∆Ssyst +∆Ssurr ≥ 0 (4.1)

In order to find conditions for spontaneous change and equilibrium in chemical systems, we
would like to express this principle in terms of system quantities, so we do not need to consider
the entropy of the surroundings. In the rest of this chapter, we consider closed systems doing
p–V work only and at mechanical and thermal equilibrium with their surroundings, so their
pressures and temperatures are defined.

A system is in material equilibrium if the amount of each substance in each of its phases
does not change with time. Material equilibrium occurs when the following two types of
equilibria happen at the same time:

• Phase equilibrium: the amount of each component does not change as a result of
matter being transported between different phases in the system.

• Reaction equilibrium: the amount of each component does not change as a result of a
chemical reaction.

Our system is closed and in thermal equilibrium so the Clausius inequality (Eq.3.39) applies to
any process happening in it:

dS ≥ dq

T
(4.2)

where the equality corresponds to a reversible process (because dq = dqrev) and the > symbol
corresponds to an irreversible process. Substituting in the first law equation we have that the
change in internal energy is:

dU = dq + dw ≤ TdS + dw (4.3)

with equality only for a reversible process.

4.2 Helmholtz Free Energy

Let us first consider a process at constant temperature (dT = 0) and constant volume (dV = 0),
perhaps a chemical reaction or a phase change occurring under those conditions. In this case,

dw = −pextdV = 0 (4.4)
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and from the equation above we have:

dU ≤ TdS = TdS + SdT − SdT (4.5)
dU − TdS − SdT = d(U − TS) ≤ −SdT (4.6)

and since dT = 0 as well,
dA = d(U − TS) ≤ 0 (4.7)

where we defined the Helmholtz free energy (A) as:

A = U − TS (4.8)

This property is also known as the Helmholtz energy or the work function (sometimes F is
used to denote this quantity instead of A).

The Helmholtz free energy is a state function because U , T , and S are state functions. In
addition, Equation 4.7 shows that the Helmholtz free energy of a closed system always
decreases when it undergoes a process at constant temperature and volume, with dA = 0
corresponding to the particular case of a reversible process. In other words, a process in a
closed system at constant T and V is spontaneous only if it decreases A. A
consequence of this is that a closed system held at constant T and V is at equilibrium
if and only if A is at a minimum.

The name “work function” for A originates from the following result. We can write dA as:

dA = dU − SdT − TdS

= dq + dw − SdT − TdS

≤ TdS + dw − SdT − TdS = dw − SdT (4.9)

Therefore, for an isothermal process (dT = 0):

dA ≤ dw (4.10)

Integrating these differentials along the considered isothermal process, we have:

wby = −w ≤ −∆A (4.11)

where wby is the work done by the system, which in our sign convention is equal to −w. The
work done by the system is at most equal to the ∆A (in absolute value) of the process and the
equality happens only if the process is reversible. Consequently, the change in Helmholtz free
energy in an isothermal process is the maximum amount work a closed system can exert on its
surroundings during that process, and the maximum work is only achieved if the process is
reversible.

4.3 Gibbs Free Energy

We now consider a process at constant temperature and pressure, which are more common
conditions in chemical practice than constant temperature and volume. In this case, because
our system is assumed to be in mechanical equilibrium (p = pext), Eq. 4.3 becomes:

dU = dq + dw ≤ TdS + dw = TdS − pdV (4.12)
d(U − TS + pV ) = dU − TdS − SdT + pdV + V dp ≤ −SdT + V dp (4.13)

We define the Gibbs free energy (G, also known simply as Gibbs energy) as:

G = U − TS + pV = H − TS = A+ pV (4.14)
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The Gibbs free energy is a state function because H, T , and S are state functions. At constant
temperature (dT = 0) and constant pressure (dp = 0), the Eq. 4.13 reduces to:

dG ≤ 0 (4.15)

Therefore, the Gibbs free energy of a closed system always decreases when it undergoes a
process at constant T and p, with dG = 0 corresponding to the case when the process is
reversible. This means that a process in a closed system at constant temperature and
pressure is spontaneous only if it decreases G. The consequence is that a closed
system held at constant temperature and pressure is at equilibrium if and only if G
is at a minimum. This is a very important result for the study of chemical reactions and
phase equilibria. A chemical reaction at constant pressure and temperature will occur
spontaneously in the direction in which G decreases. In addition, we can use the condition
dG = 0 to determine the criteria for material equilibrium. For instance, the reactant and
product concentrations at which G is a minimum (dG = 0) corresponds to the equilibrium
composition of a chemical reaction.

Same as in the case of A, the ∆G of a given process can be interpreted in terms of the work
done by the system. The change in Gibbs free energy can be written as:

dG = d(A+ pV ) = dA+ pdV + V dp (4.16)

Using Eq. 4.9, we have:
dG ≤ dw − SdT + pdV + V dp (4.17)

If we momentarily drop the requirement that only p–V work is done by the system, we have:

dG ≤ dwpV + dwnon-pV − SdT + pdV + V dp (4.18)

If we assume the process is at constant temperature (dT = 0) and pressure (dp = 0):

dG ≤ dwpV + dwnon-pV + pdV (4.19)

and if we further assume that the p–V work is done in a mechanically reversible way (p = pext),
we have dwpV = −pdV and:

dG ≤ dwnon-pV (4.20)

Integrating:
∆G ≤ wnon-pV (4.21)

Therefore, the non-p–V work done by the system is:

wby,non-pV = −wnon-pV ≤ −∆G (4.22)

The maximum non-p–V work that can be exerted by a closed system on the surroundings at
constant temperature and pressure (assuming reversible p–V work) is given by −∆G, and this
maximum is reached only if the process is reversible. This result and the calculation of ∆G for
a chemical reaction is very important in the field of electrochemistry, fuel cells, and batteries.
For instance, the ∆G of a redox reaction is a measure of the maximum amount of usable
energy that can be extracted from a battery based using that reaction.

The two results:

• A process in a closed system at constant T and V decreases A.

• A process in a closed system at constant T and p decreases G.
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are re-statements of the second law, the fact that the entropy of the universe always increases,
but written in terms of system quantities only, which is more useful for chemical calculations.
For instance, if a closed system undergoes a chemical reaction at constant temperature and
pressure, the change in entropy of the surroundings is (Eq. 3.37):

∆Ssurr =
qsurr

T
= −qsyst

T
= −∆Hsyst

T
(4.23)

where we used that q = qp = ∆H. Therefore, the entropy change of the universe is:

∆Suniv = ∆Ssurr +∆Ssyst = −∆Hsyst

T
+∆Ssyst = −∆Hsyst − T∆Ssyst

T
= −∆Gsyst

T
(4.24)

so the entropy change in the universe is positive if and only if the ∆G of the system is negative.
Hence, saying that ∆Suniv increases is equivalent to saying that ∆G decreases for a process
under these conditions. In a closed system at constant T and p an increase in G equates to an
increase in the entropy of the universe, which violates the second law.

4.4 Standard Free Energies

The Gibbs and Helmholtz free energies, G and A, are state functions and, as such, can be
calculated whenever the system is in a well-defined thermodynamic state, in other words, when
meaningful values for all thermodynamic variables exist. Same as U and H, both quantities
have units of energy and are extensive. The corresponding intensive molar quantities can be
defined by dividing by the amount of substance:

Gm =
G

n
(4.25)

Am =
A

n
(4.26)

where Gm is the molar Gibbs free energy and Am is the molar Helmholtz free energy.
Likewise, we can define the corresponding standard quantities. G◦ is the Gibbs free energy of a
substance in its standard state at the chosen temperature and G◦

m = G◦/n is the standard
molar Gibbs free energy. Equivalent definitions apply to A◦ and A◦

m.

The standard Gibbs energy of formation (∆fG
◦) is the change in Gibbs free energy when

one mole of compound in its standard state is formed from its elements in their reference states,
all at the considered temperature. This definition is entirely analogous to the standard enthalpy
of formation (Eq. 2.8). Example values at room temperature in kJ/mol are: 2.9 (diamond),
124.3 (benzene), −50.7 (methane), −394.4 (CO2), and −384.1 (NaCl). In addition, there is
another convention for the standard Gibbs energy of formation of ions in solution. Namely, the
Gibbs free energy of formation of the proton in aqueous solution is zero at any temperature:

∆fG
◦(H +

(aq)) = 0 at any temperature (4.27)

This convention is the equivalent of those for the enthalpy (Section 2.8) and for the entropy
(Section 3.5), and allows the experimental determination of formation free energies of
individual ions, circumventing the fact that cations and anions cannot exist alone in solution.

The standard Gibbs energy of reaction (also known as the standard reaction Gibbs energy,
∆rG

◦) is defined as the difference between the standard molar Gibbs free energies of pure,
separated reactants and products. For the chemical reaction:

0 →
∑

i νi Xi (4.28)
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the standard Gibbs energy of reaction is:

∆rG
◦ =

∑
i

νiG
◦
m(i) (4.29)

Because the standard Gibbs energy of each species is:

G◦
m(i) = H◦

m(i)− TS◦
m(i) (4.30)

we can express the standard Gibbs energy of reaction in terms of the standard reaction
enthalpy and entropy:

∆rG
◦ = ∆rH

◦ − T∆rS
◦ (4.31)

In addition, using Hess’ law, we can also write it in terms of the free energies of formation of
reactants and products:

∆rG
◦ =

∑
i

νi∆fG
◦(i) (4.32)

and also in terms of any other combination of free energies for suitable reactions like, for
instance, standard combustion free energies:

∆rG
◦ =

∑
i

νi∆cG
◦(i) (4.33)

in the case of reactions between organic substances.

Standard Gibbs free energies of reaction are very important because they determine whether a
given reaction is spontaneous or not. However, note that in an actual reaction, reactants and
products need not be in their standard states. We will see how the free energy of a substance
and combinations of free energies for various substances, such as ∆rG, depend on T and p. The
∆rG

◦ for a particular reaction can be determined from calorimetric experiments by measuring
the corresponding ∆rH

◦ and ∆rS
◦ and combining them using Eq. 4.31. Standard Gibbs

energies for reactions can also be obtained from measurements of equilibrium constants,
electrochemical experiments and spectroscopic measurements because, as we shall see, the
∆rG

◦ of a reaction is directly linked to its equilibrium constant. Also, using statistical
thermodynamics, it is also possible to calculate ∆rG

◦ for some reactions from quantum
mechanical calculations of the microscopic properties of the component molecules.

4.5 The Gibbs Equations and the Maxwell Relations

4.5.1 Derivation

For a reversible process in a closed system with only p–V work,

dqrev = TdS (4.34)
dwrev = −pdV (4.35)

so the first law can be written as:
dU = TdS − pdV (4.36)

This equation is valid for a reversible process only but, since U is a state function, any integral
of dU between two states yields the correct ∆U between those two states, because the internal
energy change depends only on the initial and the final state and not on the path connecting
them. Therefore, the ∆U calculated by integrating this equation is also correct for any
irreversible processes going between the same initial and final states as the reversible path.
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Using a reversible process for the ∆U calculation is more convenient than an irreversible
process, because in the latter TdS does not equal the heat exchanged (dq < dqrev = TdS) and
pdV does not equal the work (dw > dwrev = −pdV ). In fact, an irreversible process may go
through states of the system in which some or all of the system’s thermodynamic properties are
ill-defined, for instance, if the temperature or the pressure is not uniform throughout the
system. If, on the other hand, the system is in thermal equilibrium (T is defined, and the same
as the surroundings if the walls are diathermal) and in mechanical equilibrium (p is defined,
and equal to pext if the walls are nonrigid), then:

dU ≤ TdS − pdV (4.37)

with equality only at material equilibrium. Expressions like this will serve to establish the
conditions for chemical and phase equilibrium in the following.

Relations similar to Eq. 4.36 can be derived for the other energy functions undergoing a
reversible process. Namely,

dH = d(U + pV ) = dU + pdV + V dp = TdS − pdV + pdV + V dp = TdS + V dp (4.38)
dA = d(U − TS) = dU − TdS − SdT = TdS − pdV − TdS − SdT = −SdT − pdV (4.39)
dG = d(H − TS) = dH − TdS − SdT = TdS + V dp− TdS − SdT = −SdT + V dp (4.40)

so, in summary:

dU = TdS − pdV (4.41)
dH = TdS + V dp (4.42)
dA = −SdT − pdV (4.43)
dG = −SdT + V dp (4.44)

These four equations are very important, and they are known as the fundamental
thermodynamic relations (also Gibbs equations). Their importance lies in the fact that
they can be used to derive relations between the various thermodynamic properties of a system
at equilibrium in order to write thermodynamic properties of interest in terms of other more
easily measurable properties.

We can derive a few of these relations by identifying the quantities appearing in the
fundamental relations with the corresponding derivatives from the state function differential.
For instance, for the internal energy, using V and S as state variables we have:

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV (4.45)

Identifying the derivatives that accompany dS and dV with the corresponding properties in
Eq. 4.41, we have: (

∂U

∂S

)
V

= T

(
∂U

∂V

)
S

= −p (4.46)

The first relation (
(
∂U
∂S

)
V
= T ) can, in fact, be used as the thermodynamic definition of

temperature.

For the other energies, the corresponding exact differentials are:

dH =

(
∂H

∂S

)
p

dS +

(
∂H

∂p

)
S

dp (4.47)

dA =

(
∂A

∂T

)
V

dT +

(
∂A

∂V

)
T

dV (4.48)

dG =

(
∂G

∂T

)
p

dT +

(
∂G

∂p

)
T

dp (4.49)
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and, comparing to the corresponding fundamental relations (Eqs. 4.42, 4.43, and 4.44) we get:(
∂H

∂S

)
p

= T

(
∂H

∂p

)
S

= V (4.50)(
∂A

∂T

)
V

= −S

(
∂A

∂V

)
T

= −p (4.51)(
∂G

∂T

)
p

= −S

(
∂G

∂p

)
T

= V (4.52)

Another way of finding relations between thermodynamic properties is by noting that the
crossed second derivatives of an exact differential are equal. For instance, for the internal
energy:

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV (4.53)

the crossed second derivatives of the differential must be identical:

∂2U

∂S∂V
=

∂2U

∂V ∂S
(4.54)

Substituting Eq. 4.46, we have: (
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(4.55)

Applying the same procedure to the other differentials we find:(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

(4.56)(
∂p

∂T

)
V

=

(
∂S

∂V

)
T

(4.57)(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

(4.58)

These are known as Maxwell’s relations, and some of them involve quantities that are
experimentally measurable like, for instance, the thermal expansion coefficient (α, Eq. 2.99) in
Eq. 4.58.

4.5.2 Some Applications

We now apply the results above to obtain some important thermodynamic relations.

Internal pressure. We have seen that the internal pressure (Eq. 2.97) is related to the
strength of the intermolecular interactions in a gas. Dividing the dU in terms of S and V
(Eq. 4.53) by dV at constant T (i.e. applying Eq. 2.36), the internal pressure can be rewritten
as:

πT =

(
∂U

∂V

)
T

=

(
∂U

∂S

)
V

(
∂S

∂V

)
T

+

(
∂U

∂V

)
S

(4.59)

The first derivative on the right-hand side of this equation is equal to T (Eq. 4.46), the second
derivative is equal to

(
∂p
∂T

)
V

(Eq. 4.57), and the third derivative is equal to −p (Eq. 4.46).
Therefore:

πT = T

(
∂p

∂T

)
V

− p (4.60)
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Since the right-hand side depends only on pressure, temperature, and volume, this expression is
known as the thermodynamic equation of state. For an ideal gas, taking the derivative of
the ideal gas law (pV = nRT ) and substituting gives:

πT = T × nR

V
− p = p− p = 0 (4.61)

Therefore, since πT is the volume derivative of U(V, T ), we have shown that the internal energy
of an ideal gas depends on temperature only, something that was justified earlier but not
proven.

Using Eqs. 2.38 and 2.37, we have:(
∂p

∂T

)
V

= −
(
∂p

∂V

)
T

(
∂V

∂T

)
p

= −

(
∂V
∂T

)
p(

∂V
∂p

)
T

=
α

κ
(4.62)

where we have used the definitions of the expansion coefficient (α, Eq. 2.99) and the isothermal
compressibility (κ, Eq. 2.101). Substituting in Eq. 4.60, the internal pressure is:

πT =
αT

κ
− p (4.63)

so the internal pressure can be expressed in terms of other more easily measurable quantities
(p, T , α, and κ).

Joule-Thomson coefficients. The Joule-Thomson coefficient (Eq. 2.110) measures the
temperature change with pressure in an isenthalpic process:

µJT =

(
∂T

∂p

)
H

(4.64)

We have seen that the Joule-Thomson coefficient is zero for an ideal gas and can be positive or
negative, depending on the conditions, in real gases. Using Eqs. 2.38 and 2.37:

µJT =

(
∂T

∂p

)
H

= −
(
∂T

∂H

)
p

(
∂H

∂p

)
T

= −

(
∂H
∂p

)
T(

∂H
∂T

)
p

= − 1

Cp

(
∂H

∂p

)
T

(4.65)

where we substituted Cp for its definition (Eq. 2.63). The derivative in the right-hand side of
this equation is calculated by dividing the fundamental relation for the enthalpy (Eq. 4.42) by
dp at constant temperature: (

∂H

∂p

)
T

= T

(
∂S

∂p

)
T

+ V (4.66)

Applying the Maxwell’s relations (Eq. 4.58) and the definition of the expansion coefficient
(Eq. 2.99): (

∂H

∂p

)
T

= −T

(
∂V

∂T

)
p

+ V = −V Tα+ V (4.67)

And substituting this result in Eq. 4.65,

µJT =
V

Cp
(αT − 1) (4.68)

Note that for an ideal gas,

α =
1

V

(
∂V

∂T

)
p

=
nR

pV
=

1

T
(4.69)

so αT − 1 = 0. Therefore µJT = 0 for an ideal gas, in agreement with our previous results.
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Heat capacities. The constant-volume heat capacity is defined in Eq. 2.48. Using the chain
rule:

CV =

(
∂U

∂T

)
V

=

(
∂U

∂S

)
V

(
∂S

∂T

)
V

= T

(
∂S

∂T

)
V

(4.70)

where we applied Eq. 4.46 to the first derivative on the right-hand side. In turn, the
constant-pressure heat capacity is:

Cp =

(
∂H

∂T

)
p

=

(
∂H

∂S

)
p

(
∂S

∂T

)
p

= T

(
∂S

∂T

)
p

(4.71)

where Eq. 4.50 was used. These results were obtained previously in a different way (Eq. 3.58
and 3.61) and show that the heat capacities are related to the temperature-derivative of the
entropy under the corresponding conditions: constant pressure for Cp and constant volume for
CV .

We showed before (Eq. 2.106) that the value of Cp − CV for an ideal gas is nR. The relations
above allow deriving the same result for any type of system:

Cp − CV =

(
∂H

∂T

)
p

−
(
∂U

∂T

)
V

(4.72)

At constant pressure, since H = U + pV :(
∂H

∂T

)
p

=

(
∂U

∂T

)
p

+ p

(
∂V

∂T

)
p

(4.73)

so:
Cp − CV =

(
∂U

∂T

)
p

+ p

(
∂V

∂T

)
p

−
(
∂U

∂T

)
V

(4.74)

If we take the differential of U(T, V ):

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV (4.75)

and divide by dT at constant pressure, we find:(
∂U

∂T

)
p

=

(
∂U

∂T

)
V

+

(
∂U

∂V

)
T

(
∂V

∂T

)
p

(4.76)

(This is equivalent to using Eq. 2.36.) Substituting in the heat capacity difference and using
the definition of the internal pressure πT (Eq. 4.60) and α (Eq. 2.99):

Cp − CV =

(
∂U

∂V

)
T

(
∂V

∂T

)
p

+ p

(
∂V

∂T

)
p

=

(
∂V

∂T

)
p

(πT + p) = V α (πT + p) (4.77)

The expression for the internal pressure in Eq. 4.63 can be substituted to find:

Cp − CV = V α

[
αT

κ
− p+ p

]
=

TV α2

κ
(4.78)

It is easy to verify that the heat capacity difference for an ideal gas (nR, Eq. 2.106) is obtained
using the ideal gas law and the corresponding values of α (1/T , Eq. 2.100) and κ (1/p,
Eq. 2.103) in this equation. This result also shows that Cp − CV → 0 as T → 0 as well as that
Cp ≥ CV , since κ can be shown to be always positive. The heat capacity difference is relatively
small for solids but large for liquids and, particularly, for gases.
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Changes in State Functions. The thermodynamic relations above can be used to write the
differentials of state functions in terms of measurable quantities so they are easier to integrate.
This implicitly assumes that the process is reversible, otherwise the measurable quantities may
not even be defined along the process. However, as previously mentioned, the change in a state
function depends only on the initial and the final states and not on the particularities of the
process, so the calculated state function change is correct for any irreversible process between
the same initial and final states.

For instance, assume we want to calculate the entropy change associated with a process that
goes between an initial state (p1, T1) and a final state (p2, T2). The corresponding differential
can be written as:

dS =

(
∂S

∂T

)
p

dT +

(
∂S

∂p

)
T

dp (4.79)

but using Eq. 4.71: (
∂S

∂T

)
p

=
Cp

T
(4.80)

and using Maxwell’s relations (Eq. 4.58) and the definition of the expansion coefficient
(Eq. 2.99): (

∂S

∂p

)
T

= −
(
∂V

∂T

)
p

= −V α (4.81)

so the entropy differential is:

dS =
Cp

T
dT − αV dp (4.82)

Because S is a state function, we can choose any reversible path we want between the initial
and the final states. In particular, we can consider a reversible isobaric temperature change
followed by a reversible isothermal change of pressure:

(p1, T1)
Step 1−−−−→ (p1, T2)

Step 2−−−−→ (p2, T2)

The path integrals for each of these steps involve only one term of the differential and therefore
reduce to one-dimensional integrals:

∆S1 =

∫ T2

T1

Cp

T
dT (4.83)

∆S2 =

∫ p2

p1

−αV dp (4.84)

where the first step is calculated at constant p = p1 and the second step at constant T = T2.
The entropy change for the whole process is the sum of the changes for two steps:

∆S = ∆S1 +∆S2 =

∫ T2

T1

Cp

T
dT −

∫ p2

p1

αV dp (4.85)

However, note that if the system suffers a phase transition, there will be an additional
contribution to the entropy given by Eq. 3.63.

Likewise, if we want to calculate the change in enthalpy (∆H) along the same path, we have:

dH =

(
∂H

∂T

)
p

dT +

(
∂H

∂p

)
T

dp (4.86)

The first derivative is Cp by definition and the second derivative is given by Eq. 4.67:

dH = CpdT + V (1− Tα)dp (4.87)
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Same as above, we assume first a reversible isobaric change in temperature followed by a
reversible isothermal change in pressure to give:

∆H =

∫ T2

T1

CpdT +

∫ p2

p1

V (1− Tα)dp (4.88)

And, again, there may be additional contributions to the enthalpy change if the system
undergoes any phase change.

4.6 Properties of the Gibbs Free Energy

Calculating changes in the Gibbs free energy due to varying experimental conditions is essential
in chemistry because dG = 0 is the equilibrium condition for a closed system at constant
temperature and pressure, which are common conditions in experimental chemistry. The
dependence of G with temperature at constant pressure is given by (Eq. 4.52):(

∂G

∂T

)
p

= −S (4.89)

This equation can be rewritten as:(
∂(G/T )

∂T

)
p

=
1

T

(
∂G

∂T

)
p

− G

T 2
= −S

T
− G

T 2
=

−G− TS

T 2
= −H

T 2
(4.90)

This is the Gibbs-Helmholtz equation. The Gibbs-Helmholtz equation is particularly useful
when applied to the calculation of the temperature dependence of Gibbs free energy changes.
For instance:(

∂(∆rG
◦/T )

∂T

)
p

=
∑
i

νi

(
∂(G◦

m(i)/T )

∂T

)
p

= −
∑
i

νi
H◦

m(i)

T 2
= −∆rH

◦

T 2
(4.91)

Therefore, the temperature dependence of the standard reaction Gibbs energy is given by the
standard reaction enthalpy, that is, by whether the reaction is exothermic or endothermic.

The dependence of G with pressure is given by (Eq. 4.52):(
∂G

∂p

)
T

= V (4.92)

For an isothermal process between p1 and p2:

Gm(p2) = Gm(p1) +

∫ p2

p1

Vmdp (4.93)

Solids and liquids are mostly incompressible so their molar volumes are approximately constant
in a reasonable pressure range (up to hundreds to thousands of atmospheres) so Vm can be
assumed to be constant. In addition, molar volumes of liquids and solids are relatively small, so:

Gm(p2)−Gm(p1) ≈ Vm(p2 − p1) ≈ 0 (4.94)

Therefore, the Gibbs free energy of a solid or a liquid is not significantly affected by changes in
pressure, up to hundreds to thousands of atmospheres. Pressures in the geological scale, such
as those prevailing in the interior of the Earth, can go up to hundreds of GPa (1GPa =
10 000 atm). In that case, the dependence of G with p is very important and the integral in
Eq. 4.93 has to be calculated without the approximations above. We will not consider this case
in the rest of the course.
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In the case of gases, the pressure dependence of G is reasonably approximated by the behavior
of an ideal gas. The molar volume of an ideal gas is:

Vm =
RT

p
(4.95)

and therefore the integration of Eq. 4.93 gives:

Gm(p2) = Gm(p1) +RT ln

(
p2
p1

)
(4.96)

If we take p1 = p◦ = 1bar and p2 = p, we have:

Gm(p) = G◦
m +RT ln

(
p

p◦

)
(4.97)

In an ideal gas, G increases logarithmically with pressure. Note we used that Gm(p◦) = G◦
m

because an ideal gas at 1 bar and the considered temperature is in its standard state.

In a closed one-component system, if the Gibbs free energy is known as a function of pressure
and temperature, then all thermodynamic properties of the system can be calculated. One
could calculate the entropy: (

∂G

∂T

)
p

= −S (4.98)

and the volume: (
∂G

∂p

)
T

= V (4.99)

directly as derivatives of G(p, T ). This last equation establishes a relation between volume,
pressure, and temperature, so it constitutes the equation of state. Once S and V are known,
the enthalpy:

H = G+ TS = G− T

(
∂G

∂T

)
p

(4.100)

the Helmholtz free energy:

A = G+ pV = G+ p

(
∂G

∂p

)
T

(4.101)

the internal energy:

U = H + pV = G− T

(
∂G

∂T

)
p

+ p

(
∂G

∂p

)
T

(4.102)

can also be obtained from G(p, T ) and its derivatives. From these, all the other thermodynamic
properties follow. In general, a state function whose knowledge in terms of its natural
variables completely determines all thermodynamic properties in a system is known as a
thermodynamic potential. The Gibbs free energy is a thermodynamic potential in terms of
its natural variables T and p. The natural variables of a thermodynamic potential are those
appearing in the corresponding fundamental relations (Eqs. 4.41 to 4.44). The natural variables
also appear in the corresponding statement of the second law in terms of a particular
thermodynamic potential; for instance, a process in a closed system at constant T and p
decreases G. U(V, S), F (V, T ), and H(p, S) are also thermodynamic potentials in closed
one-component systems.

4.7 Chemical Potential

The fundamental equations (Eq. 4.41 to 4.44) are not applicable to open systems. We consider
now a system whose composition is changing either because a chemical reaction is happening or
because a mass transfer inside the system, or between the system and its surroundings, is
occurring.
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Homogeneous system. Consider a homogeneous (one-phase) system of any kind (open or
closed) with k components that undergoes a chemical reaction or is exchanging matter with its
surroundings. We assume the system is in mechanical and thermal equilibrium, so the pressure
and temperature in the system are well defined. The system’s thermodynamic state is given by
T , p, and the amount of each component, n1, . . . , nk. Since the Gibbs free energy is a state
function, it must be a function of all these variables, G(T, p, n1, . . . , nk). The differential of G is:

dG =

(
∂G

∂T

)
p,ni

dT +

(
∂G

∂p

)
T,ni

dp+

k∑
i=1

(
∂G

∂ni

)
T,nj ̸=i

dni (4.103)

For the first two partial derivatives, the fact that we are taking constant ni for every
component i means we are considering a constant composition. This means that the system
behaves like a closed system in material equilibrium, which is also in thermal and mechanical
equilibrium by our previous hypotheses. Therefore, the temperature and pressure derivative of
G are given by Eq. 4.52 for a reversible process:(

∂G

∂T

)
p,ni

= −S (4.104)(
∂G

∂p

)
T,ni

= V (4.105)

Substituting:

dG = −SdT + V dp+

k∑
i=1

(
∂G

∂ni

)
T,p,nj ̸=i

dni (4.106)

We define the chemical potential of component i as:

µi =

(
∂G

∂ni

)
T,p,nj ̸=i

(4.107)

With this definition, dG can be written as:

dG = −SdT + V dp+
∑
i

µidni (4.108)

This equation, which is fundamental in chemical thermodynamics, is valid for a homogeneous
system in thermal and mechanical equilibrium undergoing p–V work only. In particular, note
that this equation is valid even if the system is not in material equilibrium, in other words, if
there is a chemical reaction or exchange of matter inside the system or between the system and
its surroundings.

Using the definition of the Gibbs free energy (Eq. 4.14),

G = U − TS + pV (4.109)
dG = dU − TdS − SdT + pdV + V dp (4.110)

and substituting in Eq. 4.108 gives:

dU = TdS − pdV +
∑
i

µidni (4.111)

Doing the same thing for the enthalpy (Eq. 2.53) and the Hemlholtz free energy (Eq. 4.8) gives:

dH = TdS + V dp+
∑
i

µidni (4.112)

dA = −SdT − pdV +
∑
i

µidni (4.113)
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But the total differential of U can also be written as:

dU =

(
∂U

∂S

)
V,ni

dS +

(
∂U

∂V

)
S,ni

dV +
k∑

i=1

(
∂U

∂ni

)
S,V,nj ̸=i

dni (4.114)

Identifying the terms in this equation with those in Eq. 4.111, we have that the chemical
potential can also be expressed as a derivative of the internal energy at constant S and V :

µi =

(
∂U

∂ni

)
S,V,nj ̸=i

(4.115)

Doing the same for the other state functions we find:

µi =

(
∂U

∂ni

)
S,V,nj ̸=i

=

(
∂H

∂ni

)
S,p,nj ̸=i

=

(
∂A

∂ni

)
T,V,nj ̸=i

=

(
∂G

∂ni

)
T,p,nj ̸=i

(4.116)

The chemical potential of component i is always the derivative with respect to ni of a suitable
thermodynamic potential, but the derivative has to be taken with the potential’s corresponding
natural variables constant. The natural variables are given by the corresponding fundamental
equation (Eqs. 4.41 to 4.44).

Heterogeneous system. Now we generalize Equation 4.108 by considering a heterogeneous
system of any kind (open or closed), where several different phases exist. In a heterogeneous
system, the composition is given by the amount of each component in each phase. We label
phases with lowercase Greek letters (α, β,...). In this system, the thermodynamic state is
determined by T , p, and the amounts of all components in all phases (nα

1 ,...,nα
k ,nβ

1 ,...nβ
k ,...),

where nα
i is the amount of component i in phase α.

The Gibbs free energy is extensive, so its value for the whole system equals the sum of the
Gibbs energy for each phase:

G =
∑
α

Gα (4.117)

Consequently, the change in the free energy of the system equals the sum of the changes for
each phase:

dG =
∑
α

dGα (4.118)

Applying Eq. 4.108 to each phase individually, we have:

dG =
∑
α

−SαdT + V αdp+
∑
i

µα
i dn

α
i (4.119)

= −SdT + V dp+
∑
α

∑
i

µα
i dn

α
i (4.120)

where we used that the entropy and the volume are also extensive properties (S =
∑

α S
α and

V =
∑

α V
α). Note that comparing this equation to the dG of the heterogeneous system, we

can generalize the definition of chemical potential to a heterogeneous system as:

µα
i =

(
∂G

∂nα
i

)
T,p,nβ

j ̸=nα
i

(4.121)

where all amounts are fixed except for nα
i .

77



Material Equilibrium Physical Chemistry I (2022–2023)

Properties of the chemical potential. The chemical potential, µα
i , is a derivative of G

and, therefore, µα
i is a state function. Its units are energy divided by amount, J/mol in the SI.

Since the chemical potential is the derivative of a extensive quantity with respect to another
extensive quantity, µα

i is intensive. Because it does not depend on the total amount of
substance in the system (n), the chemical potential can be written as a function of T , p, and
the mole fractions of all the components:

µi(T, p, x
α
1 , . . .) (4.122)

The set of intensive thermodynamic properties that determine the state of the system except
for its total amount n is known as the intensive state of the system. In this case, the
intensive state is determined by T , p, xα1 , etc. We will see this again later.

As we shall see, the chemical potential is a measure of the escaping tendency of component i
from phase α. The higher the value of µα

i , the more the component wants to escape from the
phase. An important point to note is that if the system is a pure substance (if there is only one
component in the system), then the Gibbs free energy for the system is:

G = niGm,i (4.123)

and consequently:

µi =

(
∂G

∂ni

)
T,p

= Gm,i (4.124)

Therefore, in a pure substance, the chemical potential equals the molar Gibbs free energy.
However, in mixtures this is no longer the case.

4.8 Material Equilibrium

4.8.1 Conditions for Equilibrium and Change

For a closed system with p–V work only and in thermal and mechanical equilibrium, but not
necessarily in material equilibrium, we have (Eq. 4.13):

dG ≤ −SdT + V dp (4.125)

where the equality corresponds to a reversible process. The dG from Eq. 4.120 is valid for this
kind of system, and substitution leads to:∑

α

∑
i

µα
i dn

α
i ≤ 0 (4.126)

where, again, the < sign corresponds to an irreversible process and equality is valid for a
reversible process. At thermodynamic equilibrium, equivalent to material equilibrium in this
case because we already assumed the system is in mechanical and thermal equilibrium, no
further irreversible processes are possible, and:∑

α

∑
i

µα
i dn

α
i = 0 (4.127)

This is the general condition for material equilibrium in a closed system. In a closed system not
in material equilibrium, the sum on the left-hand side of Eq. 4.126 must decrease. At
equilibrium the equality in Eq. 4.127 holds. We now apply these conditions to two particularly
important cases: phase equilibria and chemical reactions.
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4.8.2 Phase Equilibrium

Consider a system that has one component i and two phases α and β. For instance, ice in
contact with liquid water at the normal melting point and 1 atm. The general equilibrium
condition (Eq. 4.127) reduces to:

µα
i dn

α
i + µβ

i dn
β
i = 0 (4.128)

Component i can move only between phase α and β so the amount of i gained by α equals the
amount lost by β:

dnα
i = −dnβ

i (4.129)

Substitution in the equation above gives:

µα
i dn

α
i + µβ

i dn
β
i = µα

i dn
α
i − µβ

i dn
α
i = (µα

i − µβ
i )dn

α
i = 0 (4.130)

At equilibrium, this equation must hold for any dnα
i so the equilibrium condition for this

system becomes:
µα
i = µβ

i (4.131)

Therefore, two phases are in material equilibrium when their chemical potentials are
equal.

If the chemical potentials of the two phases are not equal, then substitution of Eq. 4.129 in
Eq. 4.126 gives:

µα
i dn

α
i + µβ

i dn
β
i = µα

i dn
α
i − µβ

i dn
α
i = (µα

i − µβ
i )dn

α
i < 0 (4.132)

If µα
i > µβ

i , then µα
i − µβ

i > 0 and a spontaneous transfer of component i must have dnα
i < 0.

Therefore, if the chemical potential of phase α is greater than that of β, α loses component i to
β spontaneously. Conversely, if µα

i < µβ
i then µα

i − µβ
i < 0 and dnα

i > 0 so if the chemical
potential is higher in the β phase, then it spontaneously transfers component i to the α phase.

It is possible to show that the chemical potential of a component in a phase always increases
with the mole fraction of component: (

∂µα
i

∂xαi

)
T,p,nα

j ̸=i

> 0 (4.133)

Therefore, as the transfer of component happens, the phase with higher chemical potential
loses substance and its chemical potential decreases, while the other phase and increases in
chemical potential. When the chemical potentials of the two phases equalize, the mass transfer
stops and material equilibrium is reached (Eq. 4.131). In summary, if two phases have
different chemical potentials, mass is transferred from the phase with higher
potential to the phase with lower potential until their chemical potentials equalize.

Example. Consider a slightly soluble salt in contact with water. The chemical potential in the
solid is constant and equal to its molar Gibbs free energy because the solid is a pure phase. The
chemical potential of the salt in the liquid is at first very low and, as the salt dissolves, it increases.
Once enough salt has dissolved, the chemical potentials of the solid and the dissolved salt in the
liquid equalize and material equilibrium is reached.

The chemical potential behaves with respect to the amount of substance in the same way as
pressure and temperature do regarding volume and heat flow. If we put two systems with
different temperatures in contact via a thermally conducing wall, heat flows from the hotter to
the colder system. If two systems with different pressures are put in contact via a movable wall,
the system with the highest pressure expands and the other contracts. In the same way, if two
phases are in contact via a permeable wall, mass is transferred from the phase with higher
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Figure 4.1: Area under the van der Waals isotherm (blue) and under the real system’s isotherm (red),
corresponding to the change in Helmholtz energy in the liquid-gas phase transition.

chemical potential to the phase with lower chemical potential until both equalize. An exception
to this is when one of the components is missing from a phase. In that case, equilibrium can
also be reached when the chemical potential of the phase where the component is absent is
higher than the phase where it is present. In the example above, if the salt is completely
insoluble the chemical potential of the salt in solution is higher than in the solid. Since there is
no salt in solution, it cannot be transferred to the solid, so the system is at equilibrium with
µs
i < µl

i.

The phase equilibrium condition in Eq. 4.131 can be applied to justify the Maxwell’s equal-area
construction used to rectify the spurious behavior of the van der Waals equation of state in the
liquid-gas transition region (the van der Waals loops, Figure 1.8). In the transition region, we
have:

µg = Gg
m = Gl

m = µl (4.134)

Rearranging and using that the pressure of the liquid and the gas in the transition region is
equal (ptrs):

Al
m + ptrsV

l
m = Ag

m + ptrsV
g
m (4.135)

Ag
m −Al

m = −ptrs(V
g
m − V l

m) (4.136)

At constant temperature, dAm = −pdVm (Eq. 4.43), so the molar Helmholtz free energy change
between the liquid and the gas can also be written as:

Ag
m −Al

m =

∫ g

l
dAm = −

∫ V g
m

V l
m

p(Vm)dVm (4.137)

where p(Vm) is the isotherm pressure. Equating the two:

ptrs(V
g
m − V l

m) =

∫ V g
m

V l
m

p(Vm)dVm (4.138)

The left hand side of this equation is the red area under the straight line in Figure 4.1,
corresponding to the ∆A for the gas to liquid transformation from the real system’s isotherm,
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which is simply a horizontal line. The right hand side of the equation is the blue area under the
van der Waals isotherm, and corresponds to the ∆A for the same transformation calculated for
the van der Waals gas. If we want to find the transition pressure ptrs, arguably the most
principled approach is to impose that the ∆A for the liquefaction of the gas predicted by the
van der Waals gas is the same as the experimental value. This requirement is met if the areas
under the straight line (red) and the van der Waals isotherm (blue) are equal. Therefore, the
areas above and below the straight line (red) up to van der Waals isotherm (blue) must be
equal. Compare to Figure 1.8.

4.8.3 Reaction Equilibrium

Consider a chemical reaction:
0 →

∑
i νi Xi (4.139)

in a homogeneous closed system with only p–V work and in thermal and mechanical
equilibrium, but not necessarily in material equilibrium. If we consider some initial amount of
each species n0

i then, after some time has passed, the amount is:

ni = n0
i + νiξ (4.140)

where ξ is the extent of the reaction, a quantity with amount units (moles) that measures
how far the reaction has progressed. Taking differentials:

dni = νidξ (4.141)

This equation and Eq. 4.140 reflect that the changes in the amount of substance for all species
involved in a reaction is controlled by the stoichiometric coefficients. For instance, in the
reaction:

2 H2 + O2 2 H2O (4.142)

for every mole of O2 consumed, two moles of H2 are consumed and two moles of H2O are
generated.

In a homogeneous system, the material equilibrium condition (Eq. 4.127) reads:∑
i

µidni = 0 (4.143)

where we dropped the phase superscripts for simplicity, since we are considering a one-phase
system. Substituting the differential from Eq. 4.141:

∑
i

µidni =

(∑
i

νiµi

)
dξ = 0 (4.144)

and since this equation must be valid for any dξ ̸= 0, the reaction equilibrium condition
becomes: ∑

i

νiµi = 0 (4.145)

For instance, in the water formation reaction above (Eq. 4.142), the equilibrium condition in
terms of the chemical potentials of reactants and products is:

2µ(H2O)− 2µ(H2)− µ(O2) = 0 (4.146)

or:
2µ(H2O) = 2µ(H2) + µ(O2) (4.147)
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For equilibrium to be reached in a chemical reaction, the sum of the chemical potentials of the
reactants must equal the sum of the chemical potentials of the products, weighed with their
stoichiometric coefficients. Note how this condition is very similar to the phase equilibrium
condition in Eq. 4.131.

Furthermore, application of the same procedure to the equation for material change (Eq. 4.126)
gives that for a spontaneous reaction:∑

i

µidni =

(∑
i

νiµi

)
dξ < 0 (4.148)

Since the stoichiometric coefficients for the reactants are negative and for those for the
products are positive, the factor in parentheses can be written as:

∑
i

νiµi =

products∑
i

|νi|µi −
reactants∑

i

|νi|µi (4.149)

If the chemical potential of the reactants outweighs that of the products, then:

∑
i

νiµi =

products∑
i

|νi|µi −
reactants∑

i

|νi|µi < 0 (4.150)

and in order to fulfill the condition in Eq. 4.148 we must have dξ > 0, and the reaction
progresses in the forward direction (to the right, generating products). Conversely, if the
chemical potential of reactants is lower than that of products, then

∑
i

νiµi =

products∑
i

|νi|µi −
reactants∑

i

|νi|µi > 0 (4.151)

and we must have dξ < 0 and the reaction goes in the reverse direction (to the left, generating
reactants). Once the chemical potentials of reactants and products equalize, or one of the
reactants or products is exhausted, equilibrium is reached. The same observation regarding
absent components in phase equilibria applies to reactions as well. Equilibrium can be reached
when µreactants > µproducts if one or more of the reactants are absent from the system, perhaps
because it has been consumed completely.

It is important to note that these equations, and in general any equilibrium criteria based on
thermodynamic properties, control the spontaneity of a chemical or physical transformation,
but not its velocity. For a chemical reaction to happen at all, the condition in Eq. 4.151 must
be met. However, even if this condition is met the reaction may be so slow that, for all
purposes, it will never happen. One example is the formation of ammonia from N2 and H2,
which is spontaneous but so slow that it does not happen unless catalyzed. The same
observation applies to phase equilibria. For instance, at ambient conditions the graphite
allotrope of carbon is more stable than the diamond allotrope, but the transformation between
them is so slow that it is not observable.

4.9 Ideal Gas Mixtures

4.9.1 Chemical Potential

For a pure ideal gas, the chemical potential equals the molar Gibbs free energy (Gm = µ) so
Eq. 4.97 can also be written as:

µ(T, p) = µ◦(T ) +RT ln

(
p

p◦

)
(4.152)
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where µ◦ depends only on temperature because it corresponds to the same ideal gas at a
pressure of p◦ = 1bar. An ideal gas mixture is a gas mixture in which the ideal gas equation
of state (pV = nRT with n =

∑
i ni, Eq. 1.18) holds, and therefore Dalton’s law

(pi = niRT/V , Eq. 1.24, where pi = xip is the partial pressure of component i) also applies. In
an ideal gas mixture, each component behaves as if it were alone in the container, so the
thermodynamic properties of a given component i are the same as the pure component at the
same temperature and pressure pi. In particular, the chemical potential of any component in
an ideal gas mixture is:

µi(T, p, x1, . . .) = µ∗
i (T, pi) = µ◦

i (T ) +RT ln

(
pi
p◦

)
(4.153)

In a mixture, the ∗ symbol is used to represent that a thermodynamic property (the chemical
potential in this case) refers to the corresponding pure component. The standard state of a gas
in an ideal gas mixture is the same as for a pure ideal gas, namely the pure ideal gas at 1 bar
and temperature T .

Equation 4.153 can be taken as the definition of an ideal gas mixture because, as we shall see,
all thermodynamic properties of the mixture can be derived from it. In fact, complete
knowledge of the chemical potentials of all components in any mixture completely determines
its thermodynamic behavior, for the same reason that complete knowledge of G(T, p) in a
one-component closed system allows the calculation of all the other thermodynamic properties.
In particular, it is possible to show that any extensive thermodynamic property of an ideal gas
mixture can be written as the sum of the corresponding properties of the pure ideal gases at
their partial pressures and the same temperature.

4.9.2 Chemical Reactions

Consider a chemical reaction:
0 →

∑
i νi Xi (4.154)

happening between gases in an ideal gas mixture at constant temperature and pressure. The
standard reaction Gibbs free energy is:

∆rG
◦ =

∑
i

νiG
◦
m,i =

∑
i

νiµ
◦
i (4.155)

because the ∆rG
◦ refers to the conversion of reactants to prducts separated and in their

standard states. If reactants and products are separated, they are pure substances, and
therefore Gm,i = µi. The equilibrium condition for this reaction is (Eq. 4.145):∑

i

νiµi = 0 (4.156)

Substitution of the chemical potentials for the components of an ideal gas mixture (Eq. 4.153)
gives:

0 =
∑
i

νi

[
µ◦
i +RT ln

(
peq
i

p◦

)]
=
∑
i

νiµ
◦
i +

∑
i

νiRT ln

(
peq
i

p◦

)
(4.157)

where we used the “eq” superscript to denote the partial pressures at equilibrium. In the last
equation, the first term on the right hand side is ∆rG

◦ (Eq. 4.155), so we can rewrite it as:

∆rG
◦ = −RT

∑
i

νi ln

(
peq
i

p◦

)
= −RT ln

∏
i

(
peq
i

p◦

)νi

= −RT lnK◦
p (4.158)
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where K◦
p is the standard (pressure) equilibrium constant, defined as:

K◦
p =

∏
i

(
peq
i

p◦

)νi

(4.159)

The standard equilibrium constant is an adimensional quantity that relates the partial
pressures at equilibrium of all species involved in a reaction between gases in an ideal gas
mixture at constant temperature and pressure. Since νi is positive for products and negative
for reactants, it has the familiar law of mass action form.

Example. For the synthesis of ammonia reaction:

N2 + 3 H2 2 NH3

the standard equilibrium constant is:

K◦
p =

(
peq
NH3
p◦

)2

(
peq
H2
p◦

)3(
peq
N2
p◦

)
Because the partial pressures are positive, K◦

p is a positive quantity. If K◦
p is very large, the

numerator is much greater than the denominator, so the partial pressures of products are much
higher than those of reactants, and the equilibrium is shifted to the right. Conversely, if K◦

p is
close to zero, the denominator is much greater than the numerator, the partial pressures of
reactants are higher than the products, and the equilibrium is shifted to the left.

Equation 4.158 gives the relation between the standard equilibrium constant and the free
energy of reaction:

K◦
p = exp

(
−∆rG

◦

RT

)
(4.160)

We can see that if ∆rG
◦ ≪ 0, K◦

p ≫ 1 and the equilibrium is shifted to the products.
Conversely, if ∆rG

◦ ≫ 0, K◦
p ≪ 1 and the equilibrium is shifted to the reactants. Note that the

RT in the denominator of the exponential is 0.59 kcal/mol = 2.48 kJ/mol at room temperature,
which is a relatively small energy. A change of as little as 1.7 kJ/mol in the ∆rG

◦ results in K◦
p

doubling its value at that temperature. Commonly, equilibrium constants of reactions are
calculated using ∆rG

◦ obtained by combining the formation free energies (∆fG
◦, Eq. 4.32) of

reactants and products, which are in turn obtained from thermodynamic tables. Because of the
sensitivity to errors in ∆rG

◦, very accurate formation energy data is required to obtain reliable
K◦

p . Often, reliable formation energy data is not available, because typical experimental errors
in the formation energies and enthalpies are in the order of tenths to a few kJ/mol.

In an ideal gas mixture, the standard chemical potentials (µ◦
i (T )) are functions of temperature

only because the standard state is set at a pressure of 1 bar. Therefore, the standard Gibbs free
energy of reaction (∆rG

◦) is also a function of temperature only and, because of Eq. 4.160, so
is K◦

p(T ). In particular, K◦
p is independent of the total pressure of the mixture and of the

individual component concentrations. However, note that this applies only to ideal gas
mixtures, and only to real gas mixtures in the limit of zero pressure.

A reaction is exergonic (or exoergic) if ∆rG
◦ < 0 and it is endergonic (or endoergic) if

∆rG
◦ > 0. An exergonic reaction is spontaneous in the sense that, in general, as it progresses

towards equilibrium, products are generated from reactants, since K◦
p > 1. In an endergonic

reaction, in general, reactants are formed from products, since K◦
p < 1. If we are interested in

whether a given reaction can be used to synthesize a particular product, a ∆rG
◦ < 0 is a

necessary condition because otherwise products will not be significantly generated. However,
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∆rG
◦ < 0 does not guarantee that a reaction will happen because the standard equilibrium

constant and ∆rG
◦ do not carry any information about the rate of a reaction. A reaction may

be spontaneous but so slow that products are never formed.

Lastly, the standard reaction Gibbs free energy can be written in terms of the standard
reaction enthalpy and entropy:

∆rG
◦ = ∆rH

◦ − T∆rS
◦ (4.161)

At room temperature, ∆rH
◦ usually dominates so exothermic reactions are often spontaneous.

At higher temperatures, the entropy term dominates, and the reaction may become
spontaneous at increasing temperature if ∆rS

◦ > 0. In reactions involving gases, ∆rS
◦ > 0

happens if there is a net generation of gas molecules in the reaction:

∆ν =
∑
i

νi > 0 (4.162)

This is why decomposition reactions are favored at high temperature. For instance, the
decomposition of N2:

N2 2 N (4.163)

is very endothermic because the triple bond in N2 is very strong. However, it is spontaneous at
several thousand kelvin because ∆ν = 2− 1 = 1 > 0 and therefore ∆rS

◦ > 0, so the entropy
term eventually dominates the ∆rH

◦ > 0 on increasing temperature.

Example. The synthesis of ammonia:

N2 + 3 H2 2 NH3 (4.164)

is one of the most important industrial reactions today because ammonia is the key precursor for
manufacturing fertilizer, which in turn is essential in order to maintain the world’s food supply.
The ammonia synthesis reaction is exothermic (∆rH

◦ = −91.8 kJ/mol), so it is spontaneous at low
temperature. However, there are more reactant than product gas molecules (∆ν = 2−3−1 = −2 <
0), so it stops being spontaneous at high temperature. In addition, the reaction at low temperature
is slow because of the difficulty in breaking the N2 triple bond, so high temperatures are required
to obtain product at a reasonable rate. Therefore, there is a trade-off between the ∆rG

◦ of the
reaction (which is more negative at low temperatures) and the rate of the reaction (faster at higher
temperatures). A careful combination of reaction conditions, including temperature and pressure,
as well as a catalyst is used in industrial practice, in what is known as the Haber-Bosch process.
The catalyst, in general iron oxide manufactured in a very specific way for this reaction, increases
the reaction rate but does not change the thermodynamic reaction properties ∆rG

◦ and ∆rH
◦.

Occasionally, alternative versions of the standard pressure equilibrium constant K◦
p (Eq. 4.159)

are used. The pressure equilibrium constant:

Kp =
∏
i

(peq
i )

νi (4.165)

is similar to K◦
p but it is not adimensional. It has units of pressure to the ∆ν =

∑
i νi power

and, like K◦
p , it depends on temperature only. Additionally, we can write the partial pressures

as:
pi =

niRT

V
= ciRT (4.166)

and the standard pressure equilibrium constant is:

K◦
p =

∏
i

(
peq
i

p◦

)νi

=
∏
i

(
ceqi RTc◦

p◦c◦

)νi

=

(
RTc◦

p◦

)∆ν∏
i

(
ceqi
c◦

)νi

=

(
RTc◦

p◦

)∆ν

K◦
c (4.167)
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where c◦ = 1M and we defined the standard concentration equilibrium constant as:

K◦
c =

∏
i

(
ceqi
c◦

)νi

(4.168)

The K◦
c is adimensional and, since (RTc◦/p◦) is a function of temperature, K◦

c is a function of
temperature only. Nevertheless, because the standard state of gases is p = p◦, the only
equilibrium constant that is directly related to ∆rG

◦ in a gas mixture is K◦
p (Eq. 4.158).

Therefore, using K◦
p for gas mixtures in which a reaction is taking place at constant

temperature and pressure is more natural than any of the alternatives.

4.9.3 Temperature Dependence of the Equilibrium Constant

The standard equilibrium constant is (Eq. 4.158):

lnK◦
p = −∆rG

◦

RT
(4.169)

and its temperature dependence is given by:

d lnK◦
p

dT
= − 1

R

d(∆rG
◦/T )

dT
=

∆rH
◦

RT 2
(4.170)

where we used the Gibbs-Helmholtz equation (Eq. 4.91). This is known as the van’t Hoff
equation. If the temperature change is small and we assume ∆rH

◦ is approximately constant,
we can integrate this equation to find:

ln

(
K◦

p(T2)

K◦
p(T1)

)
≈ ∆rH

◦

R

(
1

T1
− 1

T2

)
(4.171)

In a reacting ideal gas mixture, if we apply a temperature change at constant pressure, the
van’t Hoff equation (Eq. 4.170) says that the change in standard equilibrium constant is:

dK◦
p

dT
= K◦

p

d lnK◦
p

dT
=

K◦
p∆rH

◦

RT 2
(4.172)

But the K◦
p/RT 2 factor on the right hand side is always positive. If the reaction is endothermic

(∆rH
◦ > 0), the equilibrium constant increases with increasing temperature (dK◦

p/dT > 0),
and the equilibrium shifts towards the products. Conversely, if the reaction is exothermic
(∆rH

◦ < 0), the equilibrium constant decreases with increasing temperature (dK◦
p/dT < 0),

and the equilibrium shifts towards the reactants. Therefore, in a closed system, a change in
temperature at constant pressure shifts the equilibrium in the direction that tends to
“counteract” the temperature shift. An increase in temperature shifts the equilibrium towards
the products if the reaction is endothermic and towards the reactants if it is exothermic.

4.9.4 Le Chatelier’s Principle

We have just shown that a reacting ideal gas mixture in a closed system subjected to an
isobaric temperature change shifts its K◦

p in the direction that counteracts the temperature
change. A similar effect happens for changes in pressure (p) and concentration (xi). However,
since K◦

p depends only on temperature, changes in p and xi do not modify the equilibrium
constant, only the equilibrium partial pressures. To quantify this shift in partial pressures, we
define the standard (pressure) reaction quotient as:

Q◦
p =

∏
i

(
pi
p◦

)νi

(4.173)
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The definition of the quotient is the same as K◦
p (Eq. 4.159) except the partial pressures and

not the equilibrium partial pressures. If Q◦
p = K◦

p , the system is at equilibrium. If Q◦
p < K◦

p ,
the numerator (products) in the reaction quotient is too small compared to the denominator
(reactants) and the reaction proceeds to the right and generates more product to reach
equilibrium. Conversely, if Q◦

p > K◦
p , the numerator (products) is too large compared to the

denominator (reactants) and the reaction must progress towards the reactants to reach
equilibrium. Similar reaction quotients can be defined for the other equilibrium constants (Qp,
Q◦

c ,...).

Let us consider an isothermal change in pressure in a system at equilibrium, from pressure peq

to p′ = αpeq where α > 1 for a compression and α < 1 for an expansion. We can bring about
this change in an ideal gas mixture, for instance, by changing the volume of the container
where the reaction is taking place. Note that the pressure change is done in such a way that
the mole fractions (xi) are not affected. Because K◦

p is a function of temperature only, it is not
modified by the change in pressure. The new reaction quotient is:

Q◦′
p =

∏
i

(
p′i
p◦

)νi

=
∏
i

(
xip

′

p◦

)νi

=
∏
i

(
xip

eqα

p◦

)νi

= α∆ν
∏
i

(
peq
i

p◦

)νi

= α∆νK◦
p (4.174)

where ∆ν =
∑

i νi. In the case of a compression (α > 1),

• If there are more product than reactant molecules (∆ν > 0), the reaction quotient
increases, and the reaction moves to the left (generates reactants).

• If there are more reactant than product molecules (∆ν < 0), the reaction quotient
decreases, and the reaction moves to the right (generates products).

• If the number of reactant and product molecules are equal (∆ν = 0), the reaction
quotient is unchanged.

In summary, an isothermal change in pressure makes the reaction shift in the direction that
decreases the number of gas molecules (i.e. the system’s volume), if the pressure increases, or
increases the number of gas molecule (i.e. the system’s volume) if the pressure decreases.

Lastly, let us consider the case in which we introduce more gas into the mixture at equilibrium
at constant temperature and volume. As before, this does not alter the equilibrium constant
K◦

p because it is a function of temperature only. If the added gas is inert, the partial pressures
in the ideal gas mixture, which are the pressure the components would have in isolation, do not
change and, therefore, the equilibrium is not affected. If, on the other hand, we add one of the
reactants or products, the reaction quotient changes and the reaction shifts in the direction
that consumes the species we introduced in order to restore equilibrium. (This is only the case
if the gas is introduced at constant temperature and volume. Otherwise, if the volume changes,
the partial pressure of all the other components change as well.)

The preceding results can be summarized as:

• If temperature changes at constant pressure, equilibrium shifts in the direction in which
the system absorbs or releases heat to counteract the temperature change.

• If pressure changes at constant temperature, the reaction moves in the direction that
decreases (compression) or increases (expansion) the number of gas molecules (the
system’s volume).

• If a reactant is added at constant temperature and volume, the reaction generates
products to restore equilibrium. If product is added, the reaction shifts to generate
reactants. If inert gas is added, no further reaction happens.
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The combination of these results is Le Chatelier’s principle, which states that in a chemical
reaction between gases at equilibrium the change in one of the variables makes the system
evolve in the direction that counteracts that change.
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Chapter 5

Phase Diagrams

5.1 Phase Diagram of a Pure Substance

5.1.1 Definition and Features

For a system to be in material equilibrium, reaction and phase equilibria must happen
concurrently. We now study phase equilibria for the particularly simple case of a pure
substance. A pure substance may exist in one or more phases, depending on the values of the
chemical potentials for each phase. Specifically, the thermodynamically stable phase of a pure
substance is the phase with lowest chemical potential (Eq. 4.126). If the pure substance
comprises more than one phase at equilibrium, then all phases in the system must have the
same chemical potential (Eq. 4.131).

The phase diagram is a graphical representation that gives the thermodynamically stable
phase of a system as a function of its state variables. A very common example is the
pressure-temperature (p–T ) phase diagram, where the stable phase is represented as a function
of temperature and pressure. However, any two other state variables can be used to construct
the phase diagram. In systems with more than one component, the composition may also be a
variable in the phase diagram.

The p–T phase diagram of carbon dioxide is shown in Figure 5.1. If, for instance, we set the
pressure and temperature of pure CO2 to those of point A (−120 ◦C and 10 kPa) then the
thermodynamically stable form of CO2 is a solid. On isobaric heating (dotted line), the point
in the diagram representing the system moves to the right until it reaches the line that
separates the solid and gas phases, known as the phase boundary. Both phases at a phase
boundary have equal chemical potential and can coexist in equilibrium, and the energy that
flows in or out of the system, either as heat or work, is used to effect the transition. In this
case, the heat absorbed by the system at the solid/gas phase boundary results in the
transformation of solid into gas at constant temperature. The process in which one phase is
converted into a different phase is known as a phase transition and, in a pure substance at a
fixed pressure, it occurs at a single temperature, known as the transition temperature (Ttrs).
Once all the solid has been converted into gas, further heat absorption by the system results in
an increase in temperature until point B is reached.

Some transitions in a one-component phase diagram receive specific names. The transition
from solid to liquid is known as melting or fusion. The temperature at which melting occurs
at 1 atm is the normal melting point and the melting temperature at 1 bar is the standard
melting point. The reverse transformation (from liquid to solid) is known as freezing, and
the normal melting point is sometimes known as the normal freezing point. The phase
transition from liquid to gas is known as boiling and the reverse (gas to liquid) is
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Figure 5.1: The phase diagram of carbon dioxide. Note the pressure scale is logarithmic. The normal
sublimation point (green) is at −78.5 ◦C and 1 atm. The triple point (blue) is at −56.6 ◦C and 5.11 atm.
The critical point (red) is at 31.0 ◦C and 72.8 atm.

condensation. The transition from solid to gas is known as sublimation and the reverse
transition (gas to solid) is a deposition. Normal and standard transition temperatures can be
defined for all these transformations, corresponding to the transition temperatures at 1 atm and
1 bar, respectively. For instance, the normal boiling point of water is 99.97 ◦C and its
standard boiling point is 99.61 ◦C. The normal sublimation point of CO2 is shown in green in
Figure 5.1. The changes in thermodynamic properties for these transitions (transition enthalpy,
entropy, etc.) have specific subscripts, shown in Table 2.2. In the case of solid-solid phase
transitions, which are fairly common under high pressure, the generic “trs” (transition)
subscript is used instead.

At point C in the phase diagram (Figure 5.1), carbon dioxide is stable as a liquid. Assume we
place CO2 under the conditions of point C in a closed container with empty space above the
liquid filled with inert gas, which we may use to control the pressure exerted on the liquid.
Because the chemical potential of CO2 in the gas phase is lower the smaller the CO2 partial
pressure (Eq. 4.97), some of the CO2 evaporates from the liquid into the gas phase until the
CO2 chemical potential in both phases equalize. At equilibrium, we have:

µl = µg = µ◦
g +RT ln

(
pv
p◦

)
where we assume ideal behavior of the gas and used Eq. 4.153 for the chemical potential of a
gas in an ideal gas mixture. The partial pressure exerted by the CO2 in contact with the liquid
is its vapor pressure.

At point C, the total pressure exerted on the system equals the vapor pressure of CO2 plus the
partial pressure of the inserted inert gas. Now we slowly release the pressure on the system by
removing some of the inert gas and the system moves down the dotted line in the phase
diagram. Once all inert gas has been removed, the pressure exerted on the liquid equals the
vapor pressure and, therefore, molecules from the bulk of the liquid can escape freely and move
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into the gas phase. Consequently, bubbles start forming throughout the liquid, and the liquid
boils. Because at the liquid-gas phase boundary the system’s pressure equals the vapor
pressure, the liquid-gas phase boundary can be read both as a) the vapor pressure of a
liquid as a function of temperature (in absence of additional external pressure), and b)
the boiling temperature of the liquid as a function of pressure. Using the same
arguments, the solid-gas line gives the sublimation vapor pressure, the pressure of the gas
in equilibrium with the solid as a function of temperature in absence of additional external
pressure.

There are some significant points with fixed temperature and pressure in the phase diagram of
a pure substance. The critical point is the end point of the liquid-gas phase boundary, and
marks the point at which the distinction between liquid and gas disappears (see Section 1.5.1).
The critical point has fixed temperature (the critical temperature, Tc) and pressure (the critical
pressure, pc), and it is marked in red in Figure 5.1 for CO2. Above the critical temperature, the
gas cannot be liquefied by compression and above the critical pressure, the liquid does not boil
upon heating. Note that it is possible to transform a liquid into a gas, and vice versa, without
a phase transition by having the system go around the critical point.

At temperatures and pressures above that of the critical point, the system behaves differently
from a gas or a liquid. This aggregation state is known as a supercritical fluid. A
supercritical fluid behaves, in general, as a liquid in which molecules have additional room for
flowing. As a result, the properties of a supercritical fluid are different from either a gas or a
liquid. In particular, it diffuses faster and has lower viscosity than the liquid, which has led to
the use of supercritical fluids as solvents. For instance, supercritical CO2 has been used to
extract caffeine from coffee to make decaf and in the preparation of aerogels. The properties of
a supercritical fluid close to the critical point are also tunable because they are very sensitive to
temperature and pressure.

Solid, liquid, and gas coexist at a single point in the phase diagram known as the triple point,
with fixed temperature T3 and pressure p3. The triple point for CO2 is shown as a blue dot in
Figure 5.1. The triple point temperature is the lowest temperature at which the liquid phase
can exist. If the slope of the solid-liquid line is positive, as is the case in most substances, the
triple point pressure is also the lowest pressure at which the liquid phase can exist. In the
particular case of carbon dioxide, the triple point is at a pressure higher than 1 atm, which
means that the solid sublimes into gas without forming the liquid (hence the term “dry ice” for
solid CO2). Compressed bottles contain liquid CO2 which upon expansion to atmospheric
pressure cool and form solid CO2, which is a common way of making dry ice.

The phase diagram of water is shown in Figure 5.2. In this case, the pressure range is extended
to cover multiple high-pressure polymorphs of ice. A polymorph is each one among the
several possible solid forms a pure substance can take. Polymorphism is very common and, for
instance, many minerals show many different polymorphs that are stable at ambient conditions.
Examples include the calcite and aragonite polymorphs of CaCO3 and the multiple polymorphs
of silica: α-quartz, β-quartz, tridymite, cristobalite, coesite,... Many elements show
polymorphism as well. The different forms (solid, liquid, or gas) of an element are known as
allotropes. For instance, O2 and O3, both gases, are allotropes of oxygen, and the polymorphs
diamond and graphite, both solids, are allotropes of carbon.

In the case of water (Figure 5.2), the stable solid form at low temperature and ambient
pressure commonly encountered is ice Ih, where the “h” refers to its hexagonal crystal structure.
However, there are up to 20 different known ice phases, most of them occurring under
extremely high pressure. Note that the existence of multiple solid forms in the phase diagram
implies that the diagram has multiple triple points, not just the one corresponding to the
solid-liquid-gas coexistence conditions.
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Figure 5.2: The phase diagram of water. Note the pressure scale is logarithmic. (Copyright Wikimedia
Commons, User:Cmglee, CC-BY-SA-3.0.)
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As mentioned before, a phase diagram shows only the thermodynamically stable phase, but
other phases may coexist if the transformation to the stable phase is sufficiently slow. A phase
is metastable if there is a different phase with lower G but the phase transition is so slow that
the metastable phase does not transform. Metastable phases are very common in solid-solid
phase transitions, where the transformation between different solid structures has a significant
kinetic barrier and is often very slow. For instance, diamond is metastable at ambient
conditions with respect to graphite because the transformation from one to the other is
extremely slow.

Another example of metastability is supercooling and superheating of liquids. A liquid is
supercooled if its temperature is below its freezing point and it is superheated if it is above
its boiling point. The phenomenon of supercooling is important, for instance, in meteorology
because clouds in the upper troposphere (7 to 12 km) often contain supercooled water droplets.
Gases can also exist in metastable form; in this case, they are known as supersaturated
vapors. The microscopic explanation for why supercooled liquids exist is that crystallization
occurs by nucleation and growth. During the nucleation process, small thermodynamically
stable nuclei are formed, which then undergo growth to form the macroscopic solid. In absence
of a seed around which crystallization can occur, nuclei large enough to be stable may not
form. This is why crystallization can be helped by adding a small seed, usually of the same
solid, to the system.

5.1.2 Phase Boundaries

The phase boundaries in a phase diagram are determined by the condition that the chemical
potentials of the two phases in equilibrium are equal:

µα(p, T ) = µβ(p, T ) (5.1)

If we move reversibly along the phase boundary by an infinitesimal amount, the chemical
potentials change by dµα and dµβ , and since we are still on the phase boundary:

µα + dµα = µβ + dµβ (5.2)

Combining the last two equations:
dµα = dµβ (5.3)

For a pure substance, µ = Gm, and we can apply the fundamental relation (Eq. 4.44) to each of
the phases:

V α
mdp− Sα

mdT = V β
mdp− Sβ

mdT (5.4)
Rearranging:

(Sβ
m − Sα

m)dT = (V β
m − V α

m)dp (5.5)
where the quantities in parentheses are the entropy and volume change for the transition:

∆trsSdT = ∆trsV dp (5.6)

Solving this equation gives the slope of the boundary in the p–T phase diagram is:
dp

dT
=

∆trsS

∆trsV
(5.7)

which is known as the Clapeyron equation. The entropy change is related to the enthalpy of
the transition, ∆trsH by Eq. 3.63. Therefore, this equation can also be written as:

dp

dT
=

∆trsH

Ttrs∆trsV
(5.8)

The Clapeyron equation is exact and applies to the phase boundary of any transition in the
p–T phase diagram of a pure substance. It can be used to predict the dependence of transition
temperatures with pressure as well as the vapor pressure of a liquid or solid as a function of
temperature.

93



Phase Diagrams Physical Chemistry I (2022–2023)

Solid-liquid boundary. The slope of the melting line is given by:

dp

dT
=

∆fusH

Tfus∆fusV
(5.9)

The enthalpy of fusion, ∆fusH, is almost always positive—fusion is endothermic, except for
solid 3He, a stable but rare isotope of helium, under certain conditions. The change in volume
during fusion, ∆fusV , is usually positive with the notable exception of water and a few other
substances like Bi and Ge, in which the liquid is denser than the solid. In addition, since the
change in volume between liquid and solid is relatively small and ∆fusV appears in the
denominator, the solid-liquid line is quite steep (has a large slope). Note how the melting line
is almost vertical and has a negative slope in the water phase diagram (Figure 5.2) but a
positive slope in the CO2 diagram (Figure 5.1). The change in the melting point with pressure,
dT/dp, is the inverse of Eq. 5.9. Since the transition line is approximately vertical, dT/dp for
the solid-liquid transition is very low and the melting point is mostly unaffected by pressure.

Liquid-gas boundary. The slope of the liquid-gas line is given by:

dp

dT
=

∆vapH

T∆vapV
(5.10)

The ∆vapH is always positive and ∆vapV is always positive and large because molar volumes of
gases are much greater than molar volumes of liquids. Therefore, the slope of the liquid-gas
boundary is positive but less steep than in the case of the melting line, and the boiling point is
affected by the external pressure a lot more than the melting point. Compare the two in the
phase diagrams of water (Figure 5.2) and CO2 (Figure 5.1).

In general, the molar volume of the gas is so much larger than the liquid that we can neglect
Vm(l) compared to Vm(g):

∆vapV = Vm(g)− Vm(l) ≈ Vm(g) (5.11)

and, assuming ideal gas behavior of the gas phase:

∆vapV ≈ Vm(g) ≈ RT

p
(5.12)

Substituting in Eq. 5.10,
dp

dT
=

p∆vapH

RT 2
(5.13)

and rearranging:
d ln p

dT
=

∆vapH

RT 2
(5.14)

which is the Clausius-Clapeyron equation, which gives the variation of the vapor pressure
of a liquid or a solid with temperature. (Remember that the p–T phase boundary for the
liquid-gas transition gives the vapor pressure of the gas as a function of temperature.) Unlike
the Clapeyron equation (Eq. 5.8), this equation is an approximation and valid only for the
liquid-gas and solid-gas boundaries. In addition, the Clausius-Clapeyron does not apply close
to the critical point, because in that case the assumption that the gas phase behaves ideally is
not justified. The Clausius-Clapeyron equation is often written in the alternative form:

d ln p

d(1/T )
= −∆vapH

R
(5.15)

Application of the chain rule to the left hand side of this equation shows that it is equivalent to
Eq. 5.14:

d ln p

d(1/T )
=

d ln p

dT

dT

d(1/T )
=

d ln p
dT

d(1/T )
dT

=
d ln p
dT
−1
T 2

= −T 2d ln p

dT
(5.16)
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Assuming the vaporization enthalpy does not change significantly with temperature, we can
integrate the Clausius-Clapeyron equation to give:

ln

(
p

p∗

)
= −∆vapH

R

(
1

T
− 1

T ∗

)
(5.17)

where p∗ and T ∗ is some point on the liquid-gas phase boundary (for instance, 1 atm and the
normal boiling point). Solving for p gives the explicit temperature dependence of the vapor
pressure with temperature:

p = p∗ exp

[
−∆vapH

R

(
1

T
− 1

T ∗

)]
(5.18)

for reasonably small temperature ranges, where the transition enthalpy can be assumed to be
approximately constant.

Solid-gas boundary. In this case, the phase boundary slope is:

dp

dT
=

∆subH

T∆subV
(5.19)

The sublimation enthalpy is positive and higher than the vaporization enthalpy because:

∆subH = ∆vapH +∆fusH (5.20)

and, as mentioned above, ∆vapH is positive and ∆fusH > 0 almost always. As in the liquid-gas
case, the ∆subV is approximately equal to Vm(g). The numerator on the right hand side of the
Clapeyron equation is higher in the solid-gas than in the liquid gas transition because
∆subH > ∆vapH, so the solid-gas boundary has a steeper slope than the liquid-gas boundary,
but not as steep as the solid-liquid line. See the phase diagrams of water (Figure 5.2) and CO2
(Figure 5.1). The Clausius-Clapeyron equation can be derived in the same way as in the case of
the liquid-gas boundary to give:

d ln p

dT
=

∆subH

RT 2
(5.21)

and its integrated form is:

p = p∗ exp

[
−∆subH

R

(
1

T
− 1

T ∗

)]
(5.22)

where p∗ and T ∗ is some point in the sublimation line. This last equation gives the vapor
pressure of the solid as a function of temperature. Using statistical thermodynamics, it is
possible to show that this line goes to p → 0 at T → 0, if the solid is stable at those conditions.

5.1.3 Phase Transition Classification

Phase transitions can be classified based on the change in thermodynamic properties at the
transition and, in particular, based on the derivatives of the chemical potential in what is
known as the Ehrenfest classification of phase transitions. Consider the evolution of the
chemical potential in a liquid-gas phase transition shown in Figure 5.3. The temperature
derivative of the chemical potential is (Eq. 4.52):(

∂µ

∂T

)
p

= −Sm (5.23)

so the chemical potential decreases with increasing temperature because Sm is positive. Since
the molar entropy of the gas is greater than the liquid, its slope is steeper, and the chemical
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Figure 5.3: Evolution of the chemical potential as a function of temperature (left) and pressure (right)
in a liquid-gas phase transition.

Figure 5.4: Evolution of the chemical potential (left), first derivatives of µ such as volume, enthalpy,
entropy, or internal energy (middle), and second derivatives of µ such as the constant-pressure heat
capacity (right) across a first-order phase transition.

potential curves for the liquid and the gas meet at the transition temperature, as shown in
Figure 5.3. The dependence of the chemical potential with pressure is (Eq. 4.52):(

∂µ

∂p

)
T

= Vm (5.24)

so, because the molar volume is positive, µ increases during an isothermal compression.
Because the molar volume of the gas is greater than that of the liquid, its slope is steeper, and
the µ(p) curves of liquid and gas meet at the transition pressure (right plot in Figure 5.3).

The characteristic feature of the pressure- or temperature-induced liquid-gas transition is that
the chemical potential is continuous across the transition, but changes in slope. Therefore, the
first derivatives of the chemical potential with respect to pressure (Vm, Eq. 5.24) and
temperature (Sm, Eq. 5.23) are discontinuous at the transition, and ∆trsV ̸= 0 and ∆trsS ̸= 0.
This discontinuity also affects other properties that can be calculated by combining first
derivatives of the chemical potential such as, for instance, the enthalpy (Eq. 3.63) so ∆trsH ̸= 0
as well. A phase transition where the first derivatives of the chemical potential are
discontinuous is known as first order or discontinuous phase transition. A first-order phase
transition has a non-zero change in volume and a latent heat (enthalpy change) associated with
it. The two phases involved in a first-order phase transition coexist while the transition is
happening. The familiar solid-liquid, solid-gas, and liquid-gas phase transitions are always first
order.
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Figure 5.5: Evolution of the chemical potential (left), first derivatives of µ such as volume, enthalpy,
entropy, or internal energy (middle), and second derivatives of µ such as the constant-pressure heat
capacity (right) across a second-order phase transition.

Figure 5.6: Heat capacity as a function of temperature across a lambda transition.

There are thermodynamic properties that are second derivatives of the chemical potential. For
instance, the constant-pressure heat capacity (Cp), is the temperature derivative of the entropy
(Eq. 4.71), and is therefore a second derivative of µ since Sm is a first temperature derivative
already. The entropy is already discontinuous at the transition and, consequently, since the
heat capacity is its derivative, Cp has a singularity. This can be understood by noting that a
first-order phase transition has an associated enthalpy change. While the transition is
happening, heat is absorbed or released by the system but its temperature does not change.
Therefore, the heat capacity at the transition is infinite (see Figure 5.4).

Phase transitions that have no associated latent heat or volume change (∆H = ∆V = 0) are
known as higher-order or continuous. In these transitions, the chemical potential has an
inflection point, as shown in Figure 5.5, which causes a change in slope, but not a discontinuity,
in the first derivatives (enthalpy, entropy, volume,...). The heat capacity, which is a second
derivative of the chemical potential, shows a discontinuity at the transition, but not a
singularity. Because the enthalpy and volume changes are both zero, the Clapeyron equation
(Eq. 5.8) does not apply to higher-order phase transitions. Higher-order phase transitions can
be further classified into second-order, where the heat capacity has a finite discontinuity at
the transition, and lambda transitions, where the heat capacity diverges at the transition,
showing a characteristic curve like the Greek letter lambda (Figure 5.6). Examples of
higher-order transitions include:

• The ferromagnetic to paramagnetic transition in iron and other ferromagnetic materials.
At low temperature, ferromagnetic materials have magnetic domains where the atomic
magnetic moments are aligned and pointing in the same direction. This ferromagnetic
order is energetically favorable but has lower entropy than the paramagnetic state, where
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the atomic moments are disordered. When the temperature is increased, the entropy
contribution to the free energy (T∆S) increases in importance and at a certain
temperature, known as the Curie temperature, the order of the magnetic moments is
lost and the material stops being ferromagnetic.

• Conductor-superconductor transitions at low temperature. Many metals undergo a
transition to a superconducting state at low temperature, in which their electrical
resistance drops to exactly zero.

• Order-disorder transitions. For instance, brass is an alloy of copper and zinc. In the
structure of β-brass at low temperature, each Zn is surrounded by eight Cu atoms and
each Cu is surrounded by eight Zn atoms, in an ordered crystalline arrangement. As
temperature increases, the entropy term in the free energy favors the onset of atomic
disorder, where Cu and Zn exchange positions in the crystal at random. At the transition
temperature (739K), the system becomes completely disordered. Another example is the
ammonium chloride crystal (NH4Cl), where at low temperature the four protons in
NH +

4 point towards the neighboring Cl– anions. At the order-disorder transition
temperature, the protons break away from those directions and the NH +

4 rotates freely.

Sometimes higher-order transitions are referred to as second-order transitions in the literature,
i.e. no distinction is made with lambda transitions.

5.2 The Phase Rule

We now calculate how many variables determine the thermodynamic state of a system as a
function of the number of phases and components in it. Instead of considering the
thermodynamic state of the system itself, which depends on the size of the system, we consider
its intensive state, the set of all intensive thermodynamic properties in the system. The
intensive state completely specifies the thermodynamic state, except for the total amount of
matter (n) in the system. The reason for using the intensive state is that the amount of
substance in each phase is irrelevant regarding its position in a p–T phase diagram, since both
pressure and temperature are intensive properties.

In a system with P phases and C components at equilibrium, the intensive state is determined
by at least two variables: temperature (T ) and pressure (p). These variables are the same
throughout the system because all phases are in equilibrium. In addition, the mole fraction of
each component i in each phase α (xαi ) is required to determine the composition. However, we
only need the mole fractions of all components minus one since the mole fraction of the last
component equals one minus the sum of all other mole fractions:

xα1 + . . .+ xαC = 1, for every phase α (5.25)

Therefore, for a system with P phases and C components, we need P (C − 1) + 2 intensive
variables to determine the intensive state: temperature, pressure, and C − 1 mole fractions for
each of the P phases.

Since the system has P phases and is at equilibrium, the chemical potentials for all components
in those phases must be equal (Eq. 4.131):

µα
1 = µβ

1 µα
1 = µγ

1 . . . µα
1 = µζ

1

µα
2 = µβ

2 µα
2 = µγ

2 . . . µα
2 = µζ

2

. . . . . . . . . . . . . . . . . .

µα
C = µβ

C µα
C = µγ

C . . . µα
C = µζ

C (5.26)
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There are (P − 1)C equations relating the chemical potentials of the different phases. These
equations act as constraints and reduce the number of degrees of freedom (F ), the
independent intensive variables required to determine the intensive state of the system. We can
find the number of degrees of freedom by subtracting the number of constraints from the
number of intensive variables:

F = P (C − 1) + 2− (P − 1)C = PC − P + 2− PC + C

F = C − P + 2 (5.27)

This is the phase rule, valid for a closed system at equilibrium with only p–V work, and in
which there are no walls physically separating the phases. The phase rule states that the
number of independent intensive variables that determine the intensive state (F ) equals the
number of components minus the number of phases plus two.

Let us apply the phase rule to the phase diagram of carbon dioxide (Figure 5.1), which is a
one-component system (C = 1). If there is a single phase in the system (P = 1), then the
number of degrees of freedom is:

F = 1− 1 + 2 = 2 (5.28)

so two variables determine the intensive state of the system, in this case, temperature and
pressure. We can change T and p and change the thermodynamic state of the system but
remain within the stability range of the same phase.

If we have two phases in equilibrium (for instance, solid and gas), P = 2 and:

F = 1− 2 + 2 = 1 (5.29)

so only one intensive variable determines the intensive state. We can either change the
temperature or the pressure but the other variable is determined by the solid-gas line in the
phase diagram. Lastly, if three phases (solid, liquid, and gas) are at equilibrium, then:

F = 1− 3 + 2 = 0 (5.30)

There are no degrees of freedom, meaning that the temperature and pressure at the triple point
have fixed values. Any change in temperature or pressure in the system will make it move away
from the triple point and lose at least one of the phases in equilibrium. The phase rule says
that it is not possible that four or more phases coexist in equilibrium in this phase diagram
because F cannot be negative. Also, since there is at least one phase P > 0, at most two
variables are required to determine the intensive state of a pure substance.

The application of the phase rule is slightly more complicated if there are reactions present.
For every independent reaction in the system, we have one additional constraint of the type
(Eq. 4.145): ∑

i

νiµi = 0 (5.31)

(A set of chemical reactions is independent if none of them can be written as linear
combination of the others.) In addition, some reactions often impose additional balance of mass
and electroneutrality constraints. For instance, if we dissolve HCN in water, the dissociation
reaction is:

HCN H+ + CN– (5.32)

and the self-ionization of water reaction is:

H2O H+ + OH– (5.33)
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These two reactions impose two constraints based on the chemical potentials:

µ(CN–) + µ(H+) = µ(HCN) (5.34)

and:
µ(H+) + µ(OH–) = µ(H2O) (5.35)

and the solution must be neutral so the amount of positive and negative charges must be equal:

n(H+) = n(OH–) + n(CN–) (5.36)

or, dividing by the total amount:

x(H+) = x(OH–) + x(CN–) (5.37)

which is an additional constraint on the intensive variables.

The simplest way to take into account these additional constraints is to count the number of
independent components. In this example, out of the five possible components in the
system (HCN, H2O, H+, OH–, and CN–) only two are independent (HCN and H2O) because
the other three are generated by reactions happening within the system and, as we have seen,
there are three additional constraints that determine the amount of each of the three
dependent components. To apply the phase rule in the presence of reactions, use the number of
independent components as C in the phase rule equation (Eq. 5.27).

Example. In the ammonia decomposition reaction:

2 NH3 N2 + 3 H2

we have three components (NH3, N2, and H2) but there are two additional constraints, namely, the
relation between the chemical potentials:

µ(N2) + 3µ(H2) = 2µ(NH3)

and, if the system started only with an initial amount of ammonia, there is also a balance of mass
condition:

n(N2) = 3n(H2)

or, dividing by the total amount,
x(N2) = 3x(H2)

so there is only one independent component (NH3).

5.3 Binary Phase Diagrams

A binary system is a system with two components (A and B). Using the phase rule, we have
C = 2 and F = 4− P , so we can have at most 3 degrees of freedom, when the system contains
a single phase. To make a bi-dimensional representation of the phase diagram we choose two of
the three degrees of freedom (for instance, T and xA or p and xA) and fix the remaining one.
The temperature-composition at atmospheric pressure and the pressure-composition at room
temperature binary phase diagrams are commonly represented.

5.3.1 Liquid-Vapor Phase Diagrams

Figure 5.7 shows model temperature-mole fraction (T -x) and pressure-mole fraction (p-x)
phase diagrams for two miscible liquids as well as the equivalent experimental diagrams for the
acetone-ethanol system. In these diagrams the x axis represents the overall mole fraction of one
of the components (A). The left edge of the diagram corresponds to pure B (xA = 0) and the
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Figure 5.7: Idealized temperature-composition (top left) and pressure-composition (top right) binary
diagrams for two completely miscible liquids. Bottom left: experimental temperature-composition phase
diagram for the acetone/ethanol mixture from Amer et al. “Methanol-ethanol-acetone vapor-liquid equi-
libria”, Ind. Eng. Chem. 48 142 (1956) (retrieved via the Dortmund Data Bank). Bottom right: ex-
perimental pressure-composition phase diagram for the acetone/ethanol mixture from Gordon and Hines
“Liquid-vapour equilibrium for the system ethanol-acetone”, Can. J. Res. 24 254 (1946).
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right edge to pure A (xB = 0). The liquid-vapor transitions indicated at those edges
correspond to the single boiling temperature (T -x diagram) or the vapor pressure (p-x
diagram) of the pure components, B on the left and A on the right of the diagram. In these
diagrams, A is the more volatile compound because T ∗

A < T ∗
B and its vapor pressure at room

temperature is higher (p∗A > p∗B). For any mixture with composition intermediate between pure
A and pure B, there is a temperature range over which the transition is effected, and the extent
of this temperature range depends on the particular composition of the mixture.

We focus for now on the T -x diagram; the following discussion is applicable to the p-x diagram
as well. At any point in the diagram, the system composition is determined by four amounts:
nl
A, nl

B, nv
A, and nv

B, which correspond to the number of moles of A and B in the liquid and
vapor phases. In the one-phase regions of the phase diagram, either nl

A = nl
B = 0, if the system

is a gas, or nv
A = nv

B = 0, if it is a liquid.

The total amounts of A and B are:

nA = nl
A + nv

A ; nB = nl
B + nv

B (5.38)

The total amounts of liquid and vapor are:

nl = nl
A + nl

B ; nv = nv
A + nv

B (5.39)

And the total number of moles in the system is:

n = nl + nv = nA + nB = nl
A + nl

B + nv
A + nv

B (5.40)

The mole fractions of the components in the liquid and vapor phases are:

xlA =
nl
A

nl
=

nl
A

nl
A + nl

B

; xlB =
nl
B

nl
=

nl
B

nl
A + nl

B

(5.41)

xvA =
nv
A

nv
=

nv
A

nv
A + nv

B

; xvB =
nv
B

nv
=

nv
B

nv
A + nv

B

(5.42)

And, finally, the overall mole fraction is:

xA =
nA

nA + nB
=

nl
A + nv

A

nl
A + nv

A + nl
B + nv

B

(5.43)

The bottom curve in the T -x diagram of Figure 5.7 that separates the two-phase
(liquid+vapor) region from the one-phase liquid region gives the boiling point of the solution as
a function of overall composition xA, so it is known as the boiling-point curve. At point D
on this curve, there is only liquid and a very small amount of vapor, both in equilibrium.
Therefore, this curve also gives the temperature at which a liquid of composition xlA = xA is in
equilibrium with its vapor. Similarly, the top curve (the condensation-point curve) in the
diagram represents the temperature at which a vapor with overall mole fraction xA starts
condensing or, equivalently, the temperature at which a vapor with mole fraction xvA = xA is in
equilibrium with the liquid.

Assume the system is at point C. At this temperature, the system is a liquid with overall
composition xlA = xA. Now we isobarically increase the temperature at constant composition,
following the CDEFG line (a constant-composition line is called an isopleth). At point D, the
vapor pressure of the solution equals the system’s pressure and therefore the liquid starts
boiling. Contrary to what happens in a pure liquid, the boiling does not happen at constant
temperature and, as the temperature is increased further, the liquid is converted into vapor and
the composition of both liquid and vapor change. At point F, all liquid disappears and the
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system transforms into a gaseous single phase at the same mole fraction as the starting point
(xA = xvA).

Consider an arbitrary point E inside the two-phase liquid+vapor region (Figure 5.7, top left).
At this point, we have a liquid with mole fraction xlA in equilibrium with vapor with mole
fraction xvA, and the system has overall mole fraction xA. The concentration of the liquid in
equilibrium with its vapor at this temperature is given by the boiling-point curve, so to find xlA
at point E we need to trace a horizontal line left to the boiling-point curve, as done in the
diagram. Similarly, the concentration of the vapor in equilibrium with the liquid at
temperature T is given by the condensation-point curve, so to find xvA for this system we extend
the horizontal line to the right until it intersects the condensation-point curve. This horizontal
line is called a tie line. By the discussion above, the end points of the tie line give the mole
fractions of the liquid and vapor phases at any point inside the two-phase liquid+vapor region.

The tie line can also be used to calculate the amounts of vapor and liquid in contact. To do
this, we write:

xA =
nl
A + nv

A

nl
A + nv

A + nl
B + nv

B

=
nA

nl + nv
(5.44)

Solving for nA:
nA = xAn

l + xAn
v (5.45)

but nA is also:
nA = nl

A + nv
A = xlAn

l + xvAn
v (5.46)

Equating the two, we find:
xAn

l + xAn
v = xlAn

l + xvAn
v (5.47)

and rearranging:
nlrl = nvrv (5.48)

where we defined:
rl = xA − xlA ; rv = xvA − xA (5.49)

Note that rl and rv are the distances from the isopleth (the vertical line) along the tie line to
the boiling-point and condensation-point curves, respectively (see Figure 5.7). Equation 5.48 is
known as the lever rule, by analogy to the lever equation in physics. At any point in the
two-phase liquid+vapor region the mole fractions of liquid and vapor are given by the
tie line endpoints and the amounts of liquid and vapor are inversely proportional
to the distance to the corresponding phase boundary. As the system progresses from
point C to E to F in Figure 5.7, the amount of liquid (nl) decreases and, at the same time, the
amount of vapor (nv) increases, as shown in the diagram.

Temperature-composition binary diagrams are important for understanding distillation, the
main process used to separate two liquids with different boilings points. Consider a liquid
within the T -x phase diagram shown in Figure 5.8 with an initial mole fraction xA and we are
interested in separating the minority component (A) from the solution. The liquid is brought
to boil and the vapor is removed from the system and condensed. The topmost tie line (in red)
indicates that this vapor in enriched in the more volatile component (A) and its composition is
given by x1 in the diagram. This process is known as a simple distillation.

If the vapor resulting from a simple distillation is cooled and condensed, following the vertical
line at x1, the distillation process can be repeated. This gives a second vapor phase with an
even higher fraction of volatile component (x2). Subsequent distillation steps can be carried
out to obtain fractions with composition x3, x4,... and ever increasing concentration of the
volatile component A. This process is known as a fractional distillation and the number of
steps in the process is known as the number of theoretical plates. Fractional distillation is
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Figure 5.8: A temperature-composition phase diagram showing the fractional distillation of a binary
mixture. The initial mole fraction is enriched in B (xA) and successive distillation steps are used to
separate the more volatile component (A).

important in many industrial applications. For instance, in the petroleum industry, the
fractional distillation (also known as refinement) of crude oil produces fuels and other products
with different compositions and purposes. In increasing order of average molecular weight and
decreasing order of volatility, the petroleum fractions are: gasoline, kerosene, diesel, fuel oil,
and bitumen. Often, the “plates” involved in a fractional distillation are truly theoretical, and
the consecutive boiling and condensation steps are effected by the packing material inside the
distillation column.

Mixtures where there are sufficiently strong interactions between the component molecules of
the two liquids may show a maximum or a minimum in their boiling-point curve, as depicted in
Figure 5.9. In these diagrams there is a particular composition (xaze

A ) for which the mixture
boils at a single temperature generating vapor with the same composition as the liquid. This
point is known as an azeotrope. If the intermolecular interactions between the liquids are
more favorable than in the pure compounds, the liquid phase of the mixture is stabilized
relative to the vapor and we have a “high-boiling” azeotrope at the maximum of the
boiling-point curve, shown on the right of Figure 5.9. Conversely, if the interactions are
unfavorable, the liquid mixture is destabilized compared to the gas and we have a minimum in
the boiling-point curve, known as a “low-boiling” azeotrope (Figure 5.9 left). Note that, despite
the fact that an azeotrope boils at a single temperature to a vapor that has the same
composition as the liquid, it is still a binary mixture, not a pure compound. Azeotropes are
important for fractional distillation because it is not possible to carry out the sequence of
distillation steps (Figure 5.8) past an azeotrope. Therefore, the presence of an azeotrope marks
the maximum concentration one can achieve from the distillation of a binary mixture. A
well-known example of an azeotrope happens in the water/ethanol system at 96% in weight of
ethanol. This is why ethanol available in drug stores always has this concentration.

5.3.2 Liquid-Liquid Phase Diagrams

In the previous section we assumed that the two liquids form a single phase at all compositions
and temperatures, i.e. they are completely miscible. Depending on the nature and strength
of the intermolecular interactions between the two compounds, this needs not be the case. Two
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Figure 5.9: Temperature-composition diagrams with low-boiling (left) and high-boiling (right)
azeotropes.

Figure 5.10: Three kinds of miscibility gaps in a temperature-composition phase diagram of two partially
miscible liquids.

liquids A and B are partially miscible if there is a composition range for which they form two
distinct phases: a phase that is mostly A with a little B and another phase with mostly B and
a little A. Liquids A and B are inmiscible if they remain in separate phases regardless of the
overall composition of the mixture.

For partially miscible compounds, whether one or two phases are formed depends on
temperature as well as composition. The regions in the T -x phase diagram in which two
partially miscible compounds separate into two liquid phases are known as the miscibility
gaps. Typical shapes for the miscibility gaps are shown in Figure 5.10. The most usual case is
shown on the left, where the two liquids are partially miscible at low temperature and become
fully miscible past the (upper) critical solution temperature (Tuc). The butanol/water
system is an example of this behavior. It is also possible to have mixtures, as in the
water/triethylamine system, where the miscibility decreases with temperature and the phase
diagram shows a lower critical solution temperature Tlc (Figure 5.10 middle). Lastly, there are
systems like water/nicotine, where the liquids are partially miscible only in a certain
temperature range and present both and upper and a lower critical temperature (Figure 5.10
right). For a point within the two-phase region in any of these diagrams, the phase
compositions and amounts are given by the horizontal tie lines and the lever rule, same as in
Section 5.3.1.

105



Phase Diagrams Physical Chemistry I (2022–2023)

Figure 5.11: Model phase diagrams of two partially miscible liquids.

Figure 5.12: Left: Temperature-composition phase diagram for two non-reacting inmiscible solids.
Right: the experimental tin-lead phase diagram.

Partial miscibility of liquids can also affect the phase diagram close to the boiling point, as
shown in Figure 5.11. If the miscibility gap is separated from the boiling-point curve, then the
phase diagram is a simple combination of the two types of diagrams seen before (Figure 5.11,
left). However, if the miscibility gap intersects the boiling-point curve, then a diagram like the
one shown in Figure 5.11 (right) may be observed. In this system, the two-phase liquid solution
boils directly, with the presence of an azeotrope at an intermediate composition.

5.3.3 Binary Phase Diagrams of Solids

We consider first the simple case of two inmiscible solids that do not react with each other. A
sketch of the temperature-composition phase diagram for this system is shown in Figure 5.12.
This diagram has two-phase solid+liquid regions at either side of point E. When the liquid is
cooled and the system enters one of these regions, a solid phase of pure A or B is formed and
the system freezes over a temperature range. The phase boundary at which the first drop of
liquid forms any of the solid phases is known as the solidus line. The phase boundary at
which the first amount of solid forms from the liquid phase is known as the liquidus line.

Point E is a composition at the mixture of solids A and B melts at a single temperature into a

106



Phase Diagrams Physical Chemistry I (2022–2023)

Figure 5.13: Left: a phase diagram for two insoluble solids A and B that react to form compound
AB with congruent melting. Right: a similar diagram with formation of compound A2B which then
undergoes incongruent melting.

liquid with the same overall composition. This point is known as an eutectic. The eutectic
temperature is lower than the melting point of either of the two solids and, similar to an
azeotrope, the composition of the melt at the eutectic is the same as in the solid phase. Some
examples of eutectics include:

• The water/NaCl system has an eutectic at −21.1 ◦C, which is lower than the melting
points of either ice (0 ◦C) or NaCl (801 ◦C). A water/salt mixture is used in winter to
remove ice from roads and other surfaces.

• A mixture of tin and lead that is 63-37% in weight is an eutectic with melting
temperature 183 ◦C used for soldering in electronic circuits.

This last eutectic is shown in the experimental Sn/Pb phase diagram in Figure 5.12. The
Sn/Pb phase diagram has composition ranges in which Sn and Pb are partially soluble. If the
amount of lead is not too high, tin can incorporate some lead into its β-Sn crystal structure. In
the same way, if the amount of tin is not too high, lead can accept some tin into its α-Pb
structure. The one-phase regions in the Sn/Pb phase diagram are examples of solid solutions
in which the crystal structure of a solid incorporates extraneous atoms. Solid solutions can be
of different kinds depending on how the foreign atoms are brought into the crystal structure of
the host. In an interstitial solid solution, the foreign atoms occupy the voids in host. For
instance, steel under certain conditions is an interstitial solid solution where carbon atoms
occupy the interstitial voids of iron. In substitutional solid solutions, the foreign atoms are
similar in size and chemistry to those from the host, and therefore can replace them in the
crystal structure. Examples of substitutional solid solutions include the Au/Ag and Al/Ga
alloys.

It is possible that the two solids in a system react with each other to form compounds with
mixed stoichiometries. In the simplest case, the phase diagram in this case may look like two
adjacent phase diagrams, one for each pair of compositions, as shown in Figure 5.13 (left). In
this case, the two solids A and B react with each other to form a compound with stoichiometry
AB. The overall phase diagram is equivalent to two phase diagrams placed side by side, one for
solids A plus AB and another for AB plus B, and each with its own eutectic. Note that pure
AB melts at a single temperature to form a liquid with the same composition. This is known as
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Figure 5.14: Phase diagram of Fe/C with low carbon content (steel). (Copyright Wikimedia Commons,
User:AG Caesar, CC-BY-SA-3.0.)

congruent melting.

Figure 5.13 (right) shows another possible binary phase diagram for reacting solids. In this
case, a compound with stoichiometry A2B is formed. If pure A2B is heated, it melts at point M
into a solid and a liquid, both with composition different from A2B. When a solid melts into a
liquid with a different composition, the phenomenon is known as incongruent melting. A
phase transition in which a solid transforms into a liquid and a different solid is known as a
peritectic transition, and P is known as a peritectic point. The melting of A2B into A and
a liquid at point M in the phase diagram (Figure 5.13, right) is an example of a peritectic
transition. In general, for a peritectic transition:

solid1 −→ solid2 + liquid (5.50)

Note the difference with an eutectic transition, such as the two transitions at the eutectic
points M and N in the left diagram of Figure 5.13, at which two solids react with each other to
form a single liquid:

solid1 + solid2 −→ liquid (5.51)

In the right diagram of the figure, line PML corresponds to a situation in which three phases
(liquid, A2B, and A) are in equilibrium, and is known as a peritectic line.

More than one compound with intermediate stoichiometry can be found in the same phase
diagram, so more complex phase diagrams have multiple eutectic and peritectic points.
Figure 5.14 shows the phase diagram for the Fe/C system in the low-carbon region, relevant to
the manufacturing of steel and cast iron, and industrially very important. In this diagram we
see several interstitial solid solutions in which carbon is dissolved into iron: α-ferrite
(body-centered cubic iron), austenite (face-centered cubic), and δ-ferrite (body-centered cubic
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Figure 5.15: Left: Coordinates in a triangular composition diagram used for a ternary mixture. Right:
a typical triangular diagram showing one-phase and two-phase regions with the tie lines.

again, but at much higher temperature). The right edge of the diagram corresponds to the
Fe3C solid, known as cementite. Point C is an eutectic (austenite + cementite −→ liquid) and
point J is a peritectic (austenite −→ δ-ferrite + liquid). By analogy with an eutectic, a point in
which two solids react with each other to form a third solid:

solid1 + solid2 −→ solid3 (5.52)

is known as an eutectoid (compare to Eq. 5.51 for an eutectic point). Point S in the Fe/C
phase diagram is an eutectoid (Figure 5.14). Similarly, a point at which a single solid
decomposes to form two other solids:

solid1 −→ solid2 + solid3 (5.53)

is known as a peritectoid.

5.4 Ternary Phase Diagrams

A ternary system has three components (C = 3). Applying the phase rule, we have F = 5− P
degrees of freedom. To make a bidimensional representation, we fix the two degrees of freedom
corresponding to temperature and pressure, and therefore there are at most two degrees of
freedom left when P = 1.

A common representation for a ternary phase diagram is an equilateral triangle, such as the
one shown in Figure 5.15 (left). In a ternary system, we have:

xA + xB + xC = 1 (5.54)

The diagram in Figure 5.15 is an equilateral triangle with height equal to one. For a given
point inside the triangle, it is possible to show that the sum of the distances from the point to
the edges of the triangle also sum to one. Therefore, these distances, shown as red, green, and
blue lines, can be identified with xA, xB, and xC , respectively. A point in the diagram has
higher mole fraction of A when it is closer to the A vertex of the triangle and, conversely,
xA = 0 if the system is on the side of the triangle connecting B to C. In addition, the line that
intersect both the A vertex a point M inside the diagram is a line that has the same ratio of B
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Figure 5.16: Solid-state ternary phase diagram for the SiO2/MgO/Al2O3 system. The colors and
the numbers denote the melting temperatures. (Copyright D. Perkins and J. Brady, “Ternary Phase
Diagrams”, Science Education Resource Center at Carleton College, CC-NC-SA-3.0. Data from Levin et
al. “Phase diagrams for ceramicists”, American Ceramic Society, 1969.)

and C concentrations (same xB/xC) as point M. Note that the sides of this triangle correspond
to the binary systems formed by the AB, AC, and BC pairs.

The stability regions are shown in a ternary diagram in the same way as for the binary
diagrams. For instance, Figure 5.15 shows a sketch of the miscibility diagram for three liquids
A, B, and C. In this diagram, the A/B and A/C pairs are completely miscible because only one
phase is present at the AB and AC edges of the triangle. In contrast, the B and C liquids are
only partially miscible, and this creates a miscibility gap (two-phase region) in the diagram.

The miscibility gap in Figure 5.15 shows the tie lines for this system. Contrary to what
happens in a binary diagram, the tie lines are not horizontal in general, but otherwise they
function in exactly the same way. Namely, for a given point M inside the diagram, we follow
the tie line on which the point is located. The endpoints of the tie line give the composition of
the two phases in equilibrium, and application of the lever rule with the distances to the phase
boundary along the tie line (in red and blue in Figure 5.15) give the amounts of each of the two
phases. The point P at which the tie lines converge is known as the plait point. At this point,
two liquids with the same composition merge to form a single phase.

Solid-state ternary diagrams are also common. For instance, Figure 5.16 shows the phase
diagram of the SiO2/MgO/Al2O3 used in petrology, since these solids are common materials in
the Earth’s interior. The diagram shows the stability range of each mineral as well as their
melting temperatures.
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Chapter 6

Solutions

6.1 Introduction

A solution is a homogeneous system with more than one component. Usual solutions are
liquid but solid solutions, in which atoms move around freely inside a crystal structure, are also
common. Often, one component in the solution, known as the solvent, is much more abundant
than the others. The components other than the solvent are the solutes. In the following, we
denote the solvent with the letter A and the solutes with B, C,... Many reactions of interest in
chemistry and all biochemical reactions happen in solution, so the thermodynamic description
of these systems is very important.

The concentration of each component in a solution can be given in different ways. The mole
fraction (xi, Section 1.4) and the molar concentration or molarity (ci, Section 1.2.2) are
commonly used. The standard molar concentration is c◦ = 1mol/dm3. The mole fraction
is often awkward to use if the solution is very dilute and, because the molar concentration
depends on the volume of the solution, it changes with temperature and pressure, which is
often undesirable. An alternative concentration measure that circumvents this problem is the
molality (bi), defined as the number of moles of component i divided by the mass of the
solvent:

bi =
ni

mA
=

ni

nAMA
(6.1)

where MA is the molar mass of the solvent. The SI units of molality are mol/kg, and the
standard molality is b◦ = 1mol/kg.

6.2 Partial Molar Quantities

6.2.1 Partial Molar Volumes

Water and ethanol are completely miscible liquids, they form a solution when they are mixed in
any proportions. Assume we mix nw moles of water and ne moles of ethanol. The volume of
the components before mixing is:

V ∗ = nwV
∗
m,w + neV

∗
m,e (6.2)

where the asterisk (∗) represents thermodynamic properties (molar volume, in this case) for the
pure components before mixing. When water and ethanol are mixed, the volume of the solution
does not equal the sum of the volumes of the pure components:

V (T, p, nw, ne) ̸= V ∗(T, p, nw, ne)
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Figure 6.1: Molar volume of a water/ethanol solution as a function of ethanol mole fraction. The dashed
line represents the sum of the molar volumes of the pure components before mixing. Data from Ott et
al. “Excess volumes for (ethanol+water) at the temperatures (298.15 and 348.15) K and pressures (0.4,
5, and 15) MPa and at the temperature 323.15 K and pressures (5 and 15) MPa ”, J. Chem. Thermodyn.
25 307 (1993) via the Dortmund Data Bank.

For instance, if we mix 10mL of water and 10mL of ethanol, the result is not 20mL of solution.
This happens because, when pure, water molecules interact only with other water molecules and
ethanol interacts only with ethanol. In solution, however, there are also interactions between
water and ethanol molecules and, since these interactions are different from water-water and
ethanol-ethanol, the end result is that the volume is not simply the sum of the corresponding
volumes for the pure components. In general, the extensive thermodynamic properties of
a solution are different from the sum of the properties for the pure components.

For convenience, we define the mean molar volume of the solution as:

Vm =
V

n
(6.3)

where n equals the total number of moles. By analogy, the mean molar volume of the pure
components is:

V ∗
m =

V ∗

n
=

∑
i niV

∗
m,i

n
=
∑
i

xiV
∗
m,i (6.4)

In the water/ethanol example, the experimental mean molar volume of the solution as a
function of the ethanol mole fraction is shown in Figure 6.1. The mean molar volume of the
pure components (Eq. 6.4) in this case is:

V ∗
m = xeV

∗
m,e + (1− xe)V

∗
m,w (6.5)

because xw = 1− xe. This is a straight line involving the molar volumes of pure water
(V ∗

m,w = 18.07 cm3/mol) and ethanol (V ∗
m,e = 58.67 cm3/mol), shown as a dotted line in the

figure. Note how the experimental mean molar volume of the solution (Vm), shown as points
and a continuous line in the figure, is similar but not exactly equal to V ∗

m.

The volume of the solution depends on temperature, pressure, and the number of moles of each
component, V (T, p, n1, . . .). To describe how the volume of the solution changes with the
addition of a component, we define the partial molar volume as:

V i =

(
∂V

∂ni

)
T,p,nj ̸=i

(6.6)
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Figure 6.2: Partial molar volumes of water (black) and ethanol (blue) in solution as a function of the
ethanol mole fraction. Data obtained from the Dortmund Data Bank, in the public domain.

The partial molar volume of component i gives the infinitesimal change in the volume of a
solution when the number of moles of component i changes at constant T , p, and number of
moles of all the other components. Because it is the ratio of two extensive properties, V i is
intensive, and can be written as a function of the intensive state, V i(T, p, x1, . . .). Partial molar
volumes have SI units of m3/mol, although cm3/mol are commonly used for solutions. For a
pure substance,

V ∗(T, p, n) = nV ∗
m(T, p) (6.7)

and the partial molar volume is:

V ∗ =

(
∂V ∗

∂n

)
T,p

= V ∗
m =

V ∗

n
(6.8)

Therefore, the partial molar volume of a pure substance equals its molar volume and
its mean molar volume.

Figure 6.2 shows the partial molar volumes for water and ethanol in a water/ethanol solution.
Because the partial molar volume equals the molar volume for a pure component,
V water = V ∗

m,water at xethanol = 0 and V ethanol = V ∗
m,ethanol at xethanol = 1. The

infinite-dilution partial molar volume of component i (V ∞
i ) is its partial molar volume at

xi = 0, that is, the change in volume with addition of a smal amount of i to pure solvent (i.e.
at infinite dilution). In Figure 6.2, the infinite-dilution partial molar volumes are on the other
end of the plot, with V water = V ∞

water at xethanol = 1 and V ethanol = V ∞
ethanol at xethanol = 0.

Some examples of V ∞
i for various solutes in water at ambient conditions are 16.6 cm3/mol

(NaCl), 14.1 cm3/mol (H2SO4), and −7.0 cm3/mol (MgSO4). The infinite-dilution partial molar
volume of MgSO4 is negative, indicating that the volume of the solution decreases when MgSO4
is added to pure water. This is likely due to the very strong interactions between the ions in
solution and the water molecules.
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6.2.2 Solution Volume in Terms of Partial Molar Volumes

The volume of the solution can be written in terms of the partial volumes of all components.
The volume differential is:

dV =

(
∂V

∂T

)
p,ni

dT +

(
∂V

∂p

)
T,ni

dp+
∑
i

(
∂V

∂ni

)
T,p,nj ̸=i

dni

=

(
∂V

∂T

)
p,ni

dT +

(
∂V

∂p

)
T,ni

dp+
∑
i

V idni (6.9)

Consider a process in which we change the total number of moles (dn) at constant temperature
(dT = 0), pressure (dp = 0), and mole fractions:

dV =
∑
i

V idni =

(∑
i

xiV i

)
dn (6.10)

where we have used ni = xin so dni = xidn because xi are constant in this process. On the
other hand, the solution volume is an extensive property, so it can be written as n times a
function of the intensive variables:

V = nf(T, p, x1, . . .) (6.11)

Therefore, for a process at constant T , p, and mole fractions it is also true that:

dV = f(T, p, x1, . . .)dn (6.12)

Comparing this equation with Eq. 6.10, we have:

f(T, p, x1, . . .) =
∑
i

xiV i (6.13)

and substituting the f function in Eq. 6.11 gives:

V = n
∑
i

xiV i =
∑
i

niV i (6.14)

so the volume of the solution equals the sum of the partial molar volumes times the number of
moles of each component. Dividing this last equation by n we find that the mean molar volume
of the solution can be written in terms of the partial molar volumes and the mole fractions:

Vm =
V

n
=

∑
i niV i

n
=
∑
i

xiV i (6.15)

The result in Eq. 6.14 can also be obtained by applying Euler’s homogeneous function theorem.
A function f(x) is homogeneous of degree n if f(αx) = αnf(x) for any scalar α. Euler’s theorem
says that, for a homogeneous function of degree n:∑

i

xi
∂f

∂xi
= nf(x)

In our case, at constant temperature and pressure, V (αn1, . . . , αnk) = αV (n1, . . . , nk), so the volume
is a homogeneous function of the first degree. Application of the theorem gives Eq. 6.14 directly.
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6.2.3 Other Extensive Properties

In addition to the volume, partial molar variants of all other extensive thermodynamic
properties can be defined. For instance, the partial molar enthalpy of component i is:

H i =

(
∂H

∂ni

)
T,p,nj ̸=i

(6.16)

and the partial molar Gibbs free energy of component i is identical to its chemical potential:

Gi =

(
∂G

∂ni

)
T,p,nj ̸=i

= µi (6.17)

In general, for any extensive property Y , we define the corresponding partial molar quantity as:

Y i =

(
∂Y

∂ni

)
T,p,nj ̸=i

(6.18)

Following the same steps as for the volume above,

• Y i = Y ∗
m,i for the pure component.

• The infinite-dilution partial molar property (Y ∞
i ) is defined as Y i at xi = 0.

• The Y and Ym of the solution can be written in terms of partial molar quantities:

Y =
∑
i

niY i (6.19)

Ym =
∑
i

xiY i (6.20)

• The total differential can be written as:

dY =

(
∂Y

∂T

)
p,ni

dT +

(
∂Y

∂p

)
T,ni

dp+
∑
i

Y idni (6.21)

In particular, the Gibbs free energy of the solution can be expressed in terms of the chemical
potentials:

G =
∑
i

niµi (6.22)

Lastly, note that the usual thermodynamic relations hold also for partial molar quantities. For
instance, G = H − TS and, taking the derivative with respect to ni at constant T , p, and nj ̸=i,
we have:

µi =

(
∂G

∂ni

)
T,p,nj ̸=i

=

(
∂(H − TS)

∂ni

)
T,p,nj ̸=i

= H i − TSi (6.23)

Likewise, it is easy to show in the same manner that:(
∂µi

∂T

)
p,nj ̸=i

= −Si ;

(
∂µi

∂p

)
T,nj ̸=i

= V i (6.24)

Since G, S, V , etc. can be written in terms of the corresponding partial molar quantities, and
those can be obtained from µi, knowledge of all the µi as a function of T , p, and the
mole fractions of all components completely determines the thermodynamic
properties of a solution. This is also valid for any homogeneous mixture like, for instance, a
gas mixture and, in fact, for any multicomponent system.
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6.2.4 The Gibbs-Duhem Equation

The Gibbs free energy of a solution can be written in terms of the chemical potentials (the
partial molar Gibbs free energies) as (Eq. 6.19):

G =
∑
i

niµi (6.25)

Taking the differential:
dG =

∑
i

µidni + nidµi (6.26)

On the other hand, the differential of G at constant T and p is (Eq. 6.21):

dG =
∑
i

µidni (6.27)

Combining these two equations, we find: ∑
i

nidµi = 0 (6.28)

This is the Gibbs-Duhem equation, valid for a process at constant T and p. It states that
the chemical potentials of the components in a solution are not all independent and gives the
relation between their changes. For instance, in a binary solution:

nAdµA = −nBdµB (6.29)

so the changes in the chemical potentials of A and B must have opposite signs and be related
by the nA/nB ratio. The Gibbs-Duhem equation applies to any extensive property, not just the
Gibbs free energy. For instance, the changes in partial molar volumes of a binary solution are
related by:

nAdV A = −nBdV B (6.30)

For instance, in the water/ethanol example (Figure 6.2), the partial molar volume of water
increases when the V of ethanol decreases and vice versa. The Gibbs-Duhem equation is useful
because it allows the experimental determination of partial molar quantities of components that
are difficult to measure by instead measuring the same quantities for all the other components.

6.3 Mixing Properties

6.3.1 Definition

The volume of a solution is similar but not quite the same as the sum of the volumes of the
pure components (Figure 6.1). To measure the deviation between the two, it is convenient to
define the volume change on mixing or mixing volume (∆mixV ) as the volume of the
solution minus that of the pure components:

∆mixV = V − V ∗ = V −
∑
i

niV
∗
m,i (6.31)

Therefore, the mixing volume is the change in volume when the pure components are mixed
and the solution is formed. In the water/ethanol example, the ∆mixV per mole of solution is
the difference between the full and dashed lines in Figure 6.1, and it is shown in Figure 6.3.

In general, for any extensive property Y , we define the corresponding mixing quantity as the
property for the solution minus the same property for the pure components:

∆mixV = V − V ∗ ∆mixS = S − S∗ (6.32)
∆mixH = H −H∗ ∆mixG = G−G∗ (6.33)
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Figure 6.3: Molar volume change per mole (∆mixV/n) on mixing water and ethanol as a function of
composition, calculated as the difference between the two curves in Figure 6.1.

This definition is consistent with the entropy of mixing defined in Section 3.3.2 and corresponds
to the mixing process in Table 2.2, in which n moles of pure components are mixed to form the
solution in a closed system at constant T and p. Specifically, the ∆mixG indicates whether the
mixing of the solution components is spontaneous at a given temperature and pressure. Two
liquids whose ∆mixG < 0 at all concentrations are completely miscible whereas ∆mixG > 0
indicates they are inmiscible. The ∆mixH gives the heat released by the formation of the
solution at constant pressure.

The mixing quantities can be written in terms of the partial molar quantities. For instance, for
the volume, we substitute the volume in terms of partial molar volumes (Eq. 6.14) into Eq. 6.31:

∆mixV = V − V ∗ =
∑
i

niV i −
∑
i

niV
∗
m,i =

∑
i

ni(V i − V ∗
m,i) (6.34)

and likewise for the mixing Gibbs free energy we have:

∆mixG = G−G∗ =
∑
i

niµi −
∑
i

niµ
∗
i =

∑
i

ni(µi − µ∗
i ) (6.35)

The usual thermodynamic relations also hold for the mixing properties. For instance:

∆mixG = G−G∗ = H−TS− (H∗−TS∗) = (H−H∗)−T (S−S∗) = ∆mixH−T∆mixS (6.36)

and it is easy to show that:(
∂∆mixG

∂T

)
p,ni

= −∆mixS ;

(
∂∆mixG

∂p

)
T,ni

= ∆mixV (6.37)

As an example, let us consider for a moment the formation of an ideal gas mixture, which can
be considered a solution, since it is a homogeneous system with more than one component,
from the corresponding ideal gases. Because the mixing happens at constant T and p and the
gas molecules do not interact with each other, ∆mixV = 0. In addition, U and H depend only
on temperature in an ideal gas, so ∆mixU = ∆mixH = 0 because the mixing is an isothermal
process. However, the entropy of mixing ∆mixS for ideal gases is not zero. We showed in
Section 3.3.2 that when two ideal gases are mixed (Eq. 3.49):

∆mixS = −naR lnxa − nbR lnxb (6.38)
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Figure 6.4: Mixing quantities for a two-component ideal gas mixture.

and therefore the mixing Helmholtz and Gibbs free energies are:

∆mixA = ∆mixH − T∆mixS = −T∆mixS = naRT lnxa + nbRT lnxb (6.39)
∆mixG = ∆mixA+ p∆mixV = ∆mixA = naRT lnxa + nbRT lnxb (6.40)

The mixing free energy, enthalpy and entropy for a binary ideal gas mixture are shown in
Figure 6.4. Because ∆mixG < 0 at all compositions, the formation of an ideal gas mixture at
constant T and p is always spontaneous and happens without absorbing or releasing any heat
(∆mixH = 0) and without change in the volume of the system (∆mixV = 0).

As we shall see, the expression for the mixing quantities in ideal gas mixtures is the same as in
ideal solutions. Because there are no intermolecular interactions in an ideal gas mixture, a
consequence of the above is that in a real gas mixture (and in a real solution) the values of
∆mixV , ∆mixU , and ∆mixH arise strictly from the intermolecular interactions between
components in the mixture, whereas ∆mixS, ∆mixG, and ∆mixA have an additional term that
comes from the increase in entropy caused by the mixing process (Eq. 6.38). This is why
mixing entropies of solutions are often positive except in a few cases when the structuring in
the solution caused by the mixing overcomes the contribution in Eq. 6.38.

6.4 Ideal Solutions

6.4.1 Definition

There are two ideal models used for solutions: ideal solutions and ideal-dilute solutions.
These models are approached when the solution has certain limiting properties, and therefore
their use is appropriate for different kinds of solutions.

In an ideal solution, the molecules of all components are so similar that the intermolecular
interactions between different component molecules are the same as in the corresponding pure
phases. For instance, if we have a binary ideal solution with components A and B, the A-B
intermolecular interactions are equivalent in strength and properties to the A-A and B-B
interactions such that the chemical environment of, for instance, an A molecule in the ideal
solution is the same as in pure A. Real solutions that are close to being ideal comprise very
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similar component molecules that enter the solution in any proportion. Examples include
benzene/toluene, chloroethane/bromoethane, neopentane/tetramethylsilane, and mixtures of
isotopologues (the same molecule with different isotopic compositions).

Vapor pressure experiments show that solutions close to the ideal solution behavior have a
mixing free energy that is approximately the same as in an ideal gas mixture (Eq. 6.40):

∆mixG = RT
∑
k

nk lnxk = RT

(∑
k

nk lnnk −
∑
k

nk lnn

)
= RT

(∑
k

nk lnnk − n lnn

)
(6.41)

where we used xk = nk/n. Since ∆mixG = G−G∗, the derivative of the mixing free energy
with respect to ni is:(

∂∆mixG

∂ni

)
T,p,nj ̸=i

=

(
∂G

∂ni

)
T,p,nj ̸=i

−
(
∂G∗

∂ni

)
T,p,nj ̸=i

= µi − µ∗
i (6.42)

but, from Eq. 6.41:(
∂∆mixG

∂ni

)
T,p,nj ̸=i

= RT

(
lnni + ni ×

1

ni
− lnn− n× 1

n

)
= RT ln

(ni

n

)
= RT lnxi (6.43)

Combining the last two equations,

µi = µ∗
i +RT lnxi (6.44)

An ideal solution is defined as a solution in which every component has a chemical potential
given by Eq. 6.44 at all compositions. This definition sets the chemical potential of all the
components under any condition and therefore, as mentioned previously, completely determines
all thermodynamic properties of an ideal solution—we study those next. Note that the
chemical potential of component i goes to the chemical potential of the pure component (µ∗

i ) in
the xi → 1 limit and to −∞ in the xi → 0 limit.

6.4.2 Thermodynamic Properties

Standard states. The standard state of a component i in an ideal liquid solution is defined
as pure liquid i at the same temperature and pressure as the solution:

µ◦
i = µ∗

i (T, p) (6.45)

In an ideal solid solution, pure solid i is used. With this choice of standard state, the chemical
potential (Eq. 6.44) becomes:

µi = µ◦
i +RT lnxi (6.46)

Mixing quantities. The mixing Gibbs free is:

∆mixG =
∑
i

ni(µi − µ∗
i ) = RT

∑
i

ni lnxi = nRT
∑
i

xi lnxi (6.47)

Because 0 < xi < 1, the mixing of the components in an ideal solution is spontaneous
(∆mixG < 0) at any temperature, pressure, and composition. The mixing entropy is:

∆mixS = −
(
∆mixG

∂T

)
p,ni

= −nR
∑
i

xi lnxi (6.48)
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Figure 6.5: A solution in equilibrium with its vapor. The mole fractions in the liquid (xl
1, x

l
2, . . .) and

vapor (xv
1, x

v
2, . . .) phases are different.

The other mixing quantities are:

∆mixH = ∆mixG+ T∆mixS = 0 (6.49)

∆mixV =

(
∆mixG

∂p

)
T,ni

= 0 (6.50)

∆mixU = ∆mixH − p∆mixV = 0 (6.51)

The mixing properties of ideal solutions are entirely equivalent to those of ideal mixtures, see
Figure 6.4 and Section 6.3.1.

Vapor pressure. Consider an ideal solution in equilibrium with its vapor, as shown in
Figure 6.5. The mole fractions in the liquid (xl1, xl2,...) are different from those in the vapor
(xv1, xv2,...) and their values are determined by the equilibrium conditions (Eq. 4.131):

µl
i = µv

i (6.52)

for every component i. The chemical potential in the liquid is (Eq. 6.44):

µl
i = µ∗,l

i +RT lnxli (6.53)

and, assuming the vapor behaves like an ideal gas mixture, the chemical potential in the gas is
(Eq. 4.153):

µv
i = µ◦,v

i +RT ln

(
pi
p◦

)
(6.54)

Therefore, the equilibrium condition (Eq. 6.52) is:

µ∗,l
i +RT lnxli = µ◦,v

i +RT ln

(
pi
p◦

)
(6.55)

The pure liquid is in equilibrium with its gas phase at temperature T when the external
pressure equals its vapor pressure:

µ∗,l
i (T, p∗i ) = µ∗,v

i (T, p∗i ) = µ◦,v
i +RT ln

(
p∗i
p◦

)
(6.56)

where p∗i is the vapor pressure of pure liquid i at temperature T . Subtracting the last two
equations gives:

µ∗,l
i (T, p)− µ∗,l

i (T, p∗i ) +RT lnxli = RT ln

(
pi
p∗i

)
(6.57)
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Figure 6.6: Pressure as a function of mole fraction in a binary ideal solution. The partial pressures (pB
and pC) and total pressure (p = pB + pC) of the ideal gas mixture in equilibrium with the solutions are
given by Raoult’s law (Eq. 6.58).

Since the chemical potential of a liquid is mostly insensitive to pressure, the first two terms in
this equation cancel out. After simplifying, we have:

pi = xlip
∗
i (6.58)

which is known as Raoult’s law, valid for ideal solutions in equilibrium with an ideal gas
mixture.

In a binary ideal solution with components B and C, the total pressure of the vapor is:

p = pB + pC = xlBp
∗
B + xlCp

∗
C = p∗C + xlB(p

∗
B − p∗C) (6.59)

where we used that xlC = 1− xlB. The partial pressures as a function of mole fraction in the
liquid are straight lines between zero and the vapor pressure of the pure component, and the
total pressure is a straight line between p∗B and p∗C (Figure 6.6).

6.4.3 Excess Functions

The thermodynamic properties of real solutions are often expressed as deviations from those of
ideal solutions. In general, for extensive property Y we define the excess Y property as:

Y E = Y − Y id (6.60)

where Y id is the value of Y for an ideal solution at the same temperature, pressure, and
composition as the real solution. For instance, the excess Gibbs free energy is:

GE = G−Gid (6.61)

Excess functions can also be written in terms of mixing quantities:

Y E = Y − Y id = (Y − Y ∗)− (Y id − Y ∗) = ∆mixY −∆mixY
id (6.62)
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so the excess functions also measure the deviation of mixing quantities from the ideal behavior
in Figure 6.4. Specifically, note that:

GE = ∆mixG−∆mixG
id = ∆mixG− nRT

∑
i

xi lnxi (6.63)

SE = ∆mixS +∆mixS
id = ∆mixS − nR

∑
i

xi lnxi (6.64)

where we substituted Eqs. 6.47 and 6.48. On the other hand, since ∆mixH
id = ∆mixV

id = 0, we
have:

HE = ∆mixH −∆mixH
id = ∆mixH (6.65)

V E = ∆mixV −∆mixV
id = ∆mixV (6.66)

The usual thermodynamic relations apply to excess functions:

GE = HE − TSE (6.67)(
∂GE

∂T

)
p,nj ̸=i

= −SE ;

(
∂GE

∂p

)
T,nj ̸=i

= V E (6.68)

which can be shown by differentiation of Eq. 6.61.

By rearranging Equation 6.63 and substituting Eq. 6.67, the mixing Gibbs free energy can be
written as:

∆mixG = HE − TSE + nRT
∑
i

xi lnxi (6.69)

The solution forms spontaneously when the pure components are mixed if ∆mixG < 0 and this
determines, for instance, whether two liquids are miscible, inmiscible, or partially miscible
under certain conditions. There are three contributing factors to the mixing Gibbs free energy:
i) the strength of the intermolecular interactions between the component molecules determines
whether the mixing is endothermic or exothermic (HE = ∆mixH), and exothermic mixing
favors solubility, ii) the entropic contribution arising from the interactions between component
molecules SE , which measures whether their chemical environments are more or less structured
than in the pure components, and iii) an additional third term that is always negative (because
0 < xi < 1 and lnxi < 0) that comes from the entropy gain due to the component mixing, even
in absence of intermolecular interactions, and always favors the spontaneity of the solution
formation.

6.5 Ideal-Dilute Solutions

6.5.1 Definition

The ideal-dilute solution model is the second of the models used to approximate the behavior
of real solutions. In an ideal-dilute solution, the solute concentration is so low that we can
assume that each solute molecule interacts with solvent molecules only and that solute-solute
interactions do not occur. Ideal-dilute solutions are approximated by real solutions of
non-electrolytes when the mole fraction of all solutes tends to zero. (In electrolyte solutions,
the solute dissociates into charged species. The charged molecules interact via long-range
Coulomb forces with each other, so the assumption that solute-solute interactions are absent is
no longer valid, except at extremely low concentrations.) Based on experimental measurements
of dilution free energies and statistical mechanical arguments, we define an ideal-dilute solution
as one where the chemical potentials of the components are:

µA = µ∗
A +RT lnxA (6.70)

µi = fi(T, p) +RT lnxi (6.71)
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for the solvent (A) and the solutes (i). The chemical potential of the solvent is the same as in
the ideal solution. For the solutes, µi involves a function fi(T, p) that depends on temperature,
pressure and the nature of both solvent and solute i but not on the solution concentration. By
definition, fi(T, p) is equal to µi in the xi → 1 limit. Since xi ∝ ci ∝ bi when xi → 0 (see
Eqs. 6.98 and 6.100 below), sometimes molarities or molalities are used to define the chemical
potential in ideal-dilute solutions, as we shall see next. Real non-electrolyte solutions approach
ideal-dilute behavior in the limit xA → 1.

6.5.2 Thermodynamic Properties

Standard states. In an ideal-dilute solution, the standard state of the solvent is pure liquid
solvent at the same temperature and pressure as the solution:

µ◦
A = µ∗

A(T, p) (6.72)

from where:
µA = µ◦

A +RT lnxA (6.73)

For the solute, the standard state is:
µ◦
i = fi(T, p) (6.74)

Based on Eq. 6.71, the standard state of the solute corresponds to a fictitious state at the same
temperature and pressure as the solution in which the solute is pure but experiences
interactions only with solvent molecules. This state is not realizable experimentally but fi(T, p)
can be obtained by extrapolation of µi vs. xi data measured at low xi to the xi → 1 limit. It is
also reasonably easy to model this fictitious state computationally and theoretically. Since
fi(T, p) depends on the nature of A, so does the µ◦

i in an ideal-dilute solution. With these
definitions, the chemical potential of the solute is:

µi = µ◦
i +RT lnxi (6.75)

Note that the equations for the chemical potentials are the same as in an ideal solution, but the
standard states of the solutes are different.

Vapor pressure. Consider an ideal-dilute solution in contact with its vapor (Figure 6.5).
The solvent has the same chemical potential as in an ideal solution, so the vapor pressure of the
solvent follows Raoult’s law (Eq. 6.58). For the solute, the chemical potential in the liquid is
(Eq. 6.75):

µl
i = µ◦,l

i +RT lnxi (6.76)

and for the vapor, assuming ideal gas mixture behavior:

µv
i = µ◦,v

i +RT ln

(
pi
p◦

)
(6.77)

At equilibrium µl
i = µv

i , so:

µ◦,l
i +RT lnxi = µ◦,v

i +RT ln

(
pi
p◦

)
(6.78)

µ◦,l
i − µ◦,v

i

RT
= ln

(
pi

xlip
◦

)
(6.79)

Solving for the partial pressure:

pi = p◦ exp

(
µ◦,l
i − µ◦,v

i

RT

)
xli = Ki(T, p)x

l
i (6.80)
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Figure 6.7: Vapor pressure as a function of liquid mole fraction in a solution that shows positive
(left) and negative (right) deviations from Raoult’s law (Eq. 6.58). The dashed lines indicate the partial
pressures for an ideal solution (Raoult’s law). The dotted lines indicate the partial pressures predicted
by Henry’s law (Eq. 6.80).

This is Henry’s law and Ki(T, p) is Henry’s law constant:

Ki(T, p) = p◦ exp

(
µ◦,l
i − µ◦,v

i

RT

)
(6.81)

which has units of pressure and depends on the nature of solute and solvent, temperature, and
pressure but not on the solution composition (the mole fractions). Because only µ◦,l

i depends
on pressure and this dependence is very mild, effectively Ki can be considered a function of
temperature only.

Raoult’s law (Eq. 6.58) and Henry’s law (Eq. 6.80) are very similar. In the former, pi is
proportional to xli and the proportionality constant is the vapor pressure of pure liquid i (p∗i ).
In the latter, the proportionality constant is the slope of the pi versus xli plot for a real solution
at xli = 0 because at this point the real solution tends to the ideal-dilute limit. An
ideal-dilute solution in equilibrium with an ideal gas mixture follows Raoult’s law
for the solvent and Henry’s law for the solute. An ideal solution follows Raoult’s
law for all components.

Two examples of vapor pressure as a function of solution composition for binary real solutions
of completely miscible non-electrolytes are given in Figure 6.7. If the solution behaves like an
ideal solution, the partial pressures are given by Raoult’s law (dashed lines, same as
Figure 6.6). In the limit xlB → 0, the system resembles an ideal-dilute solution of B in C, and
the partial pressure of B is given by Henry’s law with constant KB (dotted lines). Likewise,
xlB → 1 is approximated by an ideal-dilute solution of C in B, and pC is also given by Henry’s
law but this time with constant KC .

Solutions whose pressure is lower than the Raoult’s law prediction are said to show a negative
deviation from Raoult’s law (Figure 6.7, right). Because Raoult’s law is exact for an ideal
solution, where intermolecular interactions are identical to those in the pure liquids, a negative
deviation from Raoult’s law indicates that the intermolecular interactions in the mixture are
stronger than the average interactions in the pure liquids, resulting in a lower tendency of the
molecules to escape to the vapor and a corresponding decrease in vapor pressure. Solutions
that show negative deviations from Raoult’s law include chloroform/acetone (because a weak
hydrogen bond is formed), acetone/aniline, and chloroform/benzene. If the vapor pressure of
the solution is above the Raoult’s law prediction, it shows a positive deviation (Figure 6.7,
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left). This indicates that the intermolecular interactions in solution are weaker than in the pure
liquids on average, resulting in a greater escaping tendency to the vapor and an increase in
vapor pressure. Examples include benzene/methanol, chloroform/ethanol, and acetone/CS2.

6.6 Nonideal Solutions

6.6.1 Activities

The thermodynamic properties of a solution are completely determined if the chemical
potentials of all of its components are known. For an ideal or ideal-dilute solution, the chemical
potential of any component is:

µ
id/dil-id
i = µ◦

i +RT lnxi (6.82)

where µ◦
i is the chemical potential of a suitably chosen standard state. In a real (nonideal)

solution, this equation is no longer valid. We define the activity of component i as:

ai = exp

(
µi − µ◦

i

RT

)
(6.83)

The activity is an adimensional positive quantity that replaces xi in the chemical potential
equation:

µi = µ◦
i +RT ln ai (6.84)

Since ai = xi for an ideal (or ideal-dilute) solution, the activity tends to the mole fraction if the
real solution tends to ideality. For this reason, we define the activity coefficient as:

γi =
ai
xi

(6.85)

and use it to measure the deviation from ideality of a given real solution. The activity
coefficient is an adimensional and positive quantity and, by definition:

µi − µ
id/dil-id
i = RT ln ai −RT lnxi = RT ln γi (6.86)

so:
µi = µ

id/dil-id
i +RT ln γi (6.87)

where γi measures the departure of the chemical potential µi from its ideal value.

The activity and activity coefficients are intensive properties because µi is intensive, and
therefore they can be written as a function of the intensive state: ai(T, p, x1, . . .) and
γi(T, p, x1, . . .). For a given choice of standard state, knowledge of these activity or activity
coefficient functions is equivalent to knowing the chemical potentials and, therefore, allow the
calculation of any thermodynamic property of the solution. In addition, activities are
monotonically increasing functions of the chemical potential and therefore they increase with
increasing concentration.

Like the chemical potential, activities measure the escaping tendency of a component from the
solution. Activities are often used as an alternative to chemical potentials because they are the
equivalent of mole fractions (i.e. an “effective” mole fraction that takes into account the
interactions with other solute molecules) in nonideal solutions. Therefore their values are easier
to understand than the raw chemical potentials. Activities replace mole fractions in equations
in which nonideal solutions are involved. In addition, they do not have a singularity at xi = 0
like the chemical potential (µi → −∞) and, unlike the chemical potential, absolute values of ai
can be determined experimentally. (For µi, only differences relative to some arbitrary state can
be obtained.)
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6.6.2 Choice of Standard State

To complete the definition of the activity of a real solution (Eq. 6.83), a standard state must be
chosen. This choice is made according to the nature of the solution. The most natural standard
state for a nonideal solution is the model out of the two models we defined (ideal and
ideal-dilute) that it most resembles, although ultimately this choice is a matter of convenience.

If the solution comprises several liquid components that can have mole fractions ranging all the
way from 0 to 1, then we choose the same standard state as in an ideal solution. Because an
ideal solution follows Raoult’s law exactly (assuming ideal gas mixture for the vapor), this is
known as the Raoult’s law standard state or the symmetrical convention, since all
components are treated equally. The Raoult’s law standard state of each component i is the
pure component at the same temperature and pressure as the solution:

µ◦
i,R = µ∗

i (T, p) (6.88)

and the Raoult’s law activities and Raoult’s law activity coefficients are:

ai,R = exp

(
µi − µ◦

i,R

RT

)
(6.89)

γi,R =
ai,R
xi

(6.90)

and:
µi = µ◦

i,R +RT ln ai,R (6.91)

Since the standard state of component i is pure i, γi,R → 1 in the limit xi → 1. In addition, for
an ideal solution, ai,R = xi and γi,R = 1 under all conditions.

If the nonideal solution is composed mostly of solvent with a few solutes at low concentration,
then the appropriate standard state is the same as in an ideal-dilute solution. Because an
ideal-dilute solution follows Henry’s law exactly for the solutes (assuming ideal gas mixture for
the vapor), then this convention is known as the Henry’s law standard state or
unsymmetrical convention, since we are singling out one of the components as the solvent.
The Henry’s law standard state for the solvent is the pure solvent at the same temperature and
pressure as the solution:

µ◦
A,H = µ∗

A(T, p) (6.92)

For the solutes, the standard state is a fictitious state in which molecules of solute i experience
interactions only with solvent molecules, but nonetheless the mole fraction is xi = 1. The
activities and activity coefficients are:

ai,H = exp

(
µi − µ◦

i,H

RT

)
(6.93)

γi,H =
ai,H
xi

(6.94)

and:
µi = µ◦

i,H +RT ln ai,H (6.95)

In the infinite-dilution limit:

γ∞i,H = lim
xA→1

γi,H = 1 (6.96)

γ∞A,H = lim
xA→1

γA,H = 1 (6.97)
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and the activities tend to the corresponding mole fractions (aA,H → xA and ai,H → xi) in that
limit. For an ideal-dilute solution, γA,H = γi,H = 1, aA,H = xA, and ai,H = xi under all
conditions.

The concentrations of dilute solutions involving solid or gas solutes are often more conveniently
given in terms of molality (bi) or molar concentration (ci). If we use the molality,

bi =
ni

mA
=

ni

nAMA
=

xi
xAMA

(6.98)

and substituting xi in Eq. 6.84 with the Henry’s law standard state:

µi = µ◦
i,H +RT ln γi,Hxi = µ◦

i,H +RT ln

(
γi,HbixAMAb

◦

b◦

)
= µ◦

i,H +RT ln (MAb
◦)︸ ︷︷ ︸

µ◦
i,b

+RT ln

(
γi,HxA︸ ︷︷ ︸

γi,b

× bi
b◦

)
= µ◦

i,b +RT ln

(
γi,b ×

bi
b◦︸ ︷︷ ︸

ai,b

)

= µ◦
i,b +RT ln ai,b (6.99)

The chemical potential in terms of the molality is said to be in the molality scale, and ai,b
and γi,b are the molality-scale activities and activity coefficients. The molality scale standard
state, with chemical potential µ◦

i,b, corresponds to a fictitious state in which the solution
behaves like an ideal-dilute solution (solute molecules experience interactions only with solvent
molecules) but the molality is bi = b◦ = 1mol/kg. Same as in the mole fraction scale, γi,b → 1
as xA → 1, and γi,b = 1 and ai,b = bi/b

◦ for an ideal-dilute solution under all conditions.
Activities in the molality scale play in nonideal solutions the same role that molalities play in
ideal-dilute solutions.

If we use molar concentrations instead of molalities, we have:

ci =
ni

V
≈ niρ

mA
=

niρ

nAMA
=

xiρ

xAMA
(6.100)

where ρ is the solution density and we used than in a dilute solution the mass of the solution is
approximately equal to the mass of the solvent (m ≈ mA). Since xi is proportional to ci,
following the same steps as above, we define the concentration scale activity (ai,c), activity
coefficients (γi,c), and standard state (µ◦

i,c), as:

µi = µ◦
i,c +RT ln ai,c (6.101)

ai,c = γi,c ×
ci
c◦

(6.102)

where the standard state (with chemical potential µ◦
i,c) is a hypothetical state with ideal-dilute

behavior and solute concentration ci = c◦ = 1mol/dm3. As in the other cases, γi,c → 1 as
xA → 1, and γi,c = 1 and ai,c = ci/c

◦ for an ideal-dilute solution. Activities in the concentration
scale play in nonideal solutions the same role that concentrations play in ideal-dilute solutions.

The standard states used for the different components in solution, and the corresponding
activity and chemical potential expressions, are summarized in Appendix A.

6.6.3 Vapor Pressure

Knowledge of the activity coefficients (γi) determines the chemical potentials of all species, and
therefore it also determines all thermodynamic properties of a solution. A common way of
determining activity coefficients is to measure the vapor pressure of the solution, since the
partial pressure of a component in the vapor is a reflection of its escaping tendency from the
solution. In the following, we assume the vapor behaves as an ideal gas mixture.
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In the case of the Raoult’s law activity coefficients, we have (Eq. 6.91):

µi = µ◦
i,R +RT ln ai,R (6.103)

and, following the same procedure as in Eq. 6.4.2, it is possible to show that:

pi = ai,Rp
∗
i (6.104)

For the ideal solution (Eq. 6.44), Raoult’s law (Eq. 6.58) applies:

pid
i = xip

∗
i (6.105)

Dividing the last two equations:
pi

pid
i

=
ai,Rp

∗
i

xip∗i
= γi,R (6.106)

so the deviation between the actual vapor pressure and Raoult’s law is a direct measure of γi,R.
Solutions that show a negative deviation from Raoult’s law (Figure 6.7, right) have pi < pid

i

and γi,R < 1, indicating that the solution is more stable than the ideal solution or, equivalently,
that favorable intermolecular interactions stabilize the solution and lower the chemical
potentials of the components. Conversely, if the solution shows a positive deviation from
Raoult’s law (Figure 6.7, left), pi > pid

i and γi,R > 1. In this case, intermolecular interactions
are unfavorable and increase the activity and the chemical potential in the solution, making
more molecules escape to the vapor than in an ideal solution.

In the case of Henry’s law activity coefficients, we differentiate between solute and solvent. For
the solvent, the standard state is the same as in Raoult’s law activity coefficients, so the
discussion above applies. For the solutes, we have (Eq. 6.95):

µi = µ◦
i,H +RT ln ai,H (6.107)

and following the same steps as in Section 6.5.2, we find:

pi = Kiai,H (6.108)

whereas for an ideal-dilute solution, Henry’s law (Eq. 6.80) applies:

pid-dil
i = Kix

l
i (6.109)

Dividing the two:
pi

pid-dil
i

=
Kiai,H

Kixli
= γi,H (6.110)

so the Henry’s law coefficients are determined as the ratio between the observed partial
pressure of solute i and the value predicted by Henry’s law (dotted lines in Figure 6.7).

6.6.4 Nonideal Gas Mixtures

Due to their similarities with solutions, we now briefly consider nonideal (real) mixtures of
gases. The standard state of a gas in a real gas mixture is the same as in an ideal gas mixture
and in a pure gas: the pure ideal gas at the same temperature as in the mixture and at a
pressure of p◦ = 1bar. We can define the activity for a gas mixture in the same way as for a
solution (Eq. 6.83):

ai = exp

(
µi − µ◦

i

RT

)
(6.111)

µi = µ◦
i +RT ln ai (6.112)
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We define the fugacity (fi) of component i as the activity times the standard pressure:

fi = aip
◦ (6.113)

The fugacity has units of pressure. It is intensive because ai is intensive, so it can be written as
a function of the intensive state (fi(T, p, x1, . . .)). In addition, the chemical potential in terms
of fugacity is:

µi = µ◦
i +RT ln

(
fi
p◦

)
(6.114)

to be compared to the chemical potential of an ideal gas mixture (Eq. 4.153):

µi = µ◦
i +RT ln

(
pi
p◦

)
(6.115)

Therefore, the fugacity plays the same role in a nonideal gas mixture as the partial pressure
does in an ideal gas mixture. Since the partial pressure is pi = xip, we can define the fugacity
coefficient (ϕi) as:

ϕi =
fi
pi

=
fi
xip

(6.116)

In the p → 0 limit, all real gases tend to the ideal gas behavior, so fi → pi and ϕi → 1. In
addition, fi = pi and ϕi = 1 for an ideal gas mixture under all conditions. When ϕi < 1, the
gas is more stable in the mixture than if it were an ideal gas mixture, indicating favorable
intermolecular attractions. Conversely, if ϕi > 1, the gas is less stable in the mixture due to
intermolecular repulsions.

If the fugacities or the fugacity coefficients are known, then the chemical potentials and
consequently all thermodynamic properties of the mixture can be calculated. Gas fugacities
can be used to lift the assumption that the gas mixture in the vapor is ideal in the derivation of
Raoult’s law (Eq. 6.58) and Henry’s law (Eq. 6.80). For instance, Raoult’s law for a nonideal
solution in contact with nonideal vapor is (compare to Eq. 6.106):

fi = ai,Rf
∗
i = γi,Rx

l
if

∗
i (6.117)

where fi is the fugacity of i in the mixture and f∗
i is the fugacity in the pure gas.

Fugacities can be determined experimentally from isothermal compressibility data for real
gases. The partial molar volume of component i in a mixture is:

V i =

(
∂V

∂ni

)
p,T,nj ̸=i

=

[
∂

∂ni

(
∂G

∂p

)
T,nj

]
p,T,nj ̸=i

=

[
∂

∂p

(
∂G

∂ni

)
p,T,nj ̸=i

]
T,nj

=

(
∂µi

∂p

)
T,nj

(6.118)
Substituting Eq. 6.114 and noting that µ◦

i is a function of T only if i is a gas,

V i = RT

(
∂(ln fi)

∂p

)
T,nj

(6.119)

But the logarithm of the fugacity can be written as (Eq. 6.116):

ln fi = ln(ϕixip) = lnϕi + lnxi + ln p (6.120)

and of the three terms, lnxi does not change with pressure, so:

V i = RT

(
∂(lnϕi)

∂p

)
T,nj

+
RT

p
(6.121)
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This equation can be re-written as:

d(lnϕi) =

(
V i

RT
− 1

p

)
dp (6.122)

Integrating this expression between p = 0, for which ϕi = 1, and pressure p, we have:

lnϕi = lnϕi − ln 1 =

∫ p

0

(
V i

RT
− 1

p

)
dp (6.123)

where the integration is carried out at constant temperature and composition.

This equation also applies to pure real gases as well as mixtures. In a pure gas V i = V ∗
m,i and:

lnϕ∗
i =

∫ p

0

(
V ∗
m,i

RT
− 1

p

)
dp (6.124)

Using the virial equation of state (Eq. 1.30), we can write the fugacity coefficients in terms of
the virial coefficients. The virial equation of state says:

pVm = RT
(
1 +B†(T )p+ C†(T )p2 + . . .

)
(6.125)

Vm

RT
=

1

p
+B†(T ) + C†(T )p+ . . . (6.126)

Vm

RT
− 1

p
= B†(T ) + C†(T )p+ . . . (6.127)

Carrying out the integration we find:

lnϕ∗
i = B†(T )p+

1

2
C†(T )p2 + . . . (6.128)

Note that lnϕ∗
i measures the deviation of a real gas from ideality in a manner similar to, but

not exactly the same as, the compression factor Z:

Z =
pVm

RT
= 1 +B†(T )p+ C†(T )p2 + . . . (6.129)

Also, unlike Z, lnϕi can be defined for any component in a gas mixture. A common
approximation for lnϕ is to use the second virial coefficient (B†) only. In accordance with the
law of corresponding states, different gases at the same reduced temperature and reduced
pressure have approximately the same fugacity coefficient. This allows the representation of
graphs of fugacity against reduced pressure and reduced temperature for pure simple gases,
similar to the compressibility factor chart in Figure 1.9.

Determining the fugacity of the components of a gas mixture using Eq. 6.123 is a lot of work,
since it requires determining the partial volume for all components under all conditions. A
common approximation is the Lewis-Randall rule in which the fugacity of component i in
the mixture is assumed to be the same as in pure i at the same temperature and pressure as in
the mixture:

ϕi ≈ ϕ∗
i (T, p) (6.130)

The Lewis-Randall rule implicitly assumes that the intermolecular interactions in the mixture
have approximately the same nature and strength as in the pure gas. This is only a good
approximation if the component molecules of the mixture are all similar to each other.
Alternatively one can use experimental equations of state for the mixture to determine the
fugacities.
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6.7 Electrolyte Solutions

6.7.1 Activities, Mean Ionic Activity Coefficients, and Chemical Potentials

An electrolyte is a substance that dissociates into cations and anions in solution and, as a
result, conducts electricity. Electrolytes are classified into strong, if they are mostly
dissociated into ions and are good electricity conductors, and weak, if they are dissociated only
slightly and are poor conductors. For instance, HCl is a strong electrolyte:

HCl H+ + Cl– (6.131)

whereas acetic acid (HAc) is weak:

HAc H+ + Ac– (6.132)

True electrolytes are those in which the pure substance is ionic whereas potential
electrolytes generate ions only when in solution, but the pure substance is neutral. Sodium
chloride (NaCl) is an ionic solid, so it is a true electrolyte. Hydrogen chloride (HCl) is a gas
composed of neutral molecules, so it is a potential electrolyte.

When an electrolyte dissociates in solution, the resulting ions are surrounded by solvent
molecules, a process known as solvation. In addition, because the ions are charged and the
Coulomb interaction between them decays only as the first power of the distance, assuming
that ions in solution are not interacting with each other (as in an ideal-dilute solution) is a
poor approximation except at extremely low concentrations.

Let us consider a strong electrolyte that dissociates into ν+ cations with charge z+ and ν−
anions with charge z−:

Mν+Xν– ν+ Mz+ + ν− Mz– (6.133)

For instance, Ba(NO3)2 has ν+ = 1, ν− = 2, z+ = 2, and z− = −1. If ni moles of the electrolyte
dissolve, the amount of cations is n+ = ν+ni and the amount of anions is n− = ν−ni. The
chemical potential of the ions:

µ+ =

(
∂G

∂n+

)
T,p,nj ̸=+

µ− =

(
∂G

∂n−

)
T,p,nj ̸=−

(6.134)

are difficult to determine individually because it is not possible to increase the number of one
type of ion keeping the counterion amount fixed. Instead, we consider the chemical potential of
the electrolyte as a whole:

µi =

(
∂G

∂ni

)
T,p,nj ̸=i

(6.135)

In solution, there are cations, anions, and solvent, so the differential of G is:

dG = −SdT + V dp+ µAdnA + µ+dn+ + µ−dn− (6.136)

and since dn+ = ν+dni and dn− = ν−dni:

dG = −SdT + V dp+ µAdnA + (ν+µ+ + ν−µ−)dni = −SdT + V dp+ µAdnA + µidni (6.137)

so the chemical potential of the electrolyte as a whole is related to the cation and anion
chemical potentials by:

µi = ν+µ+ + ν−µ− (6.138)
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The molality scale is often used for ionic concentrations and potentials:

µ+ = µ◦
+ +RT ln

(
γ+

b+
b◦

)
(6.139)

µ− = µ◦
− +RT ln

(
γ−

b−
b◦

)
(6.140)

Substituting in Eq. 6.138, we find:

µi = ν+

[
µ◦
+ +RT ln

(
γ+

b+
b◦

)]
+ ν−

[
µ◦
− +RT ln

(
γ−

b−
b◦

)]
= ν+µ

◦
+ + ν−µ

◦
−︸ ︷︷ ︸

µ◦
i

+RT

[
ν+ ln

(
γ+

b+
b◦

)
+ ν− ln

(
γ−

b−
b◦

)]

= µ◦
i +RT ln

[
γ
ν+
+ γ

ν−
−

(
b+
b◦

)ν+ (b−
b◦

)ν−]
(6.141)

where we defined the standard chemical potential of the electrolyte as:

µ◦
i = ν+µ

◦
+ + ν−µ

◦
− (6.142)

In addition, we define the (molality-scale) mean ionic activity coefficient as:

γν± = γ
ν++ν−
± = (γ+)

ν+(γ−)
ν− (6.143)

where ν = ν+ + ν−. In a strong electrolyte, the ionic concentrations can be written in terms of
the stoichiometric molality (bi) as b+ = ν+bi and b− = ν−bi, so we can re-write Eq. 6.141 as:

µi = µ◦
i +RT ln

γν± ν
ν+
+ ν

ν−
−︸ ︷︷ ︸

νν±

(
bi
b◦

)ν

 = µ◦
i + νRT ln

[
ν±γ±

(
bi
b◦

)]
(6.144)

where we defined νν± = ν
ν+
+ ν

ν−
− by analogy with the mean ionic activity coefficient (Eq. 6.143).

The chemical potential of the electrolyte as a whole given by Eq. 6.144 is similar to the chemical
potential of other species in solution, except for the inclusion of the ionic stoichiometric
coefficients. In order to make it fully consistent, we define the electrolyte activity as:

ai =

(
γ±ν±

bi
b◦

)ν

(6.145)

so that Eq. 6.144 reduces to the familiar expression:

µi = µ◦
i +RT ln ai (6.146)

As a consequence of this definition of activity, the standard state of the electrolyte as a whole is
a fictitious state where the ions do not interact with each other (γ± = 1) and the electrolyte
concentration is ν±bi = b◦ = 1mol/kg.

In the infinite-dilution limit (xA → 1 and bi → 0), γ± = γ∞+ = γ∞− = 1. However, except at
extremely low concentrations, the ionic and mean ionic activity coefficients deviate significantly
from one. For instance, at 0.1mol/kg concentration in water, γ± is 0.797 (HCl), 0.517 (CaCl2),
0.446 (Na2SO4), to be compared with ethanol (γi = 0.988). At the much lower concentration of
0.001mol/kg, γ± is 0.965 (HCl), 0.888 (CaCl2), 0.886 (Na2SO4), whereas the activity coefficient
of ethanol is essentially one (γi = 0.9999).
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Even in strong electrolytes, the number of ions in solution is most often not given by the stoichio-
metric relations n+ = ν+ni and n− = ν−ni. This is because ions of opposite charge in solution
attract each other and, often, they associate into ionic pairs:

Mz+(sln) + Xz–(sln) MXz–+z+(sln) (6.147)

where the ionic pairs may also be charged. Ionic pairing is favored by high ionic charges (z+ and
|z−|) and solvents with low dielectric constants, and it is negligible only in dilute 1:1 solutions using
a high dielectric constant solvent (like water). It is possible to show that, in the presence of neutral
ionic pair formation, the chemical potential of the electrolyte as a whole (Eq. 6.144) stays the same
but the mean ionic activity coefficient becomes:

γ†
± = αν+/ν

[
1− (1− α)

(
ν+
ν−

)]
γ± (6.148)

where α measures the extent of electrolyte dissociation into individual pairs:

n+ = αν+ni n− = αν−ni (6.149)

and γ± is the mean ionic activity coefficient in absence of ionic pairing. Since ionic pairing is so
prevalent, thermodynamic tables reporting γ± and empirical models such as the Davies equation
(see below) approximate γ†

± instead of γ±.

6.7.2 The Debye-Hückel theory

Because isolated cations or anions cannot exist in solution, it is not possible to determine γ+ or
γ− experimentally. However, it is possible to derive theoretical expressions for these quantities
using statistical mechanics. Debye and Hückel developed a simple but insightful theory for γ+
and γ− in 1923. The Debye-Hückel theory is based on the assumptions that i) ions are
uniformly charged hard spheres all with the same radius a, ii) the solvent is a continuum with
dielectric constant ϵr,A, and iii) the solution is very dilute. Under these assumptions, the ionic
activity coefficients are:

ln γ+ = −
z2+AI

1/2
b

1 +BaI
1/2
b

ln γ− = −
z2−AI

1/2
b

1 +BaI
1/2
b

(6.150)

The A and B constants depend only on the nature of the solvent and the temperature:

A = (2πNAρA)
1/2

(
e2

4πϵ0ϵr,AkBT

)
(6.151)

B = e

(
2NAρA

ϵ0ϵr,AkBT

)
(6.152)

where NA is Avogadro’s constant, ρA is the solvent density, e is the charge of an electron, ϵ0 is
the vacuum permittivity, and kB = R/Na is Boltzmann’s constant. The units of A and B are
(kg/mol)1/2 and (kg/mol)1/2m−1, respectively. The Ib in the Debye-Hückel activity coefficients
(Eq. 6.150) is the (molality-scale) ionic strength, defined as:

Ib =
1

2

∑
j

z2j bj (6.153)

where the sum runs over all ionic species in solution, not just the ions from the electrolyte we
are interested in. The ionic strength has units of molality, and it increases with the amount and
charge of the dissolved ions. The ionic strength measures the “chargedness” of the solution, and
its ability to stabilize the charges of ions dissolved in it.
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From the activity coefficients of the individual ions (Eq. 6.150), we can determine the mean
ionic activity coefficient by substitution in Eq. 6.143:

γν± = (γ+)
ν+(γ−)

ν− (6.154)

ln γ± =
ν+ ln γ+ + ν− ln γ−

ν+ + ν−
= −

ν+z
2
+ + ν−z

2
−

ν+ + ν−

AI
1/2
b

1 +BaI
1/2
b

(6.155)

The electrolyte is electrically neutral, so ν+z+ + ν−z− = 0. From this,

ν+z
2
+ = −ν−z+z−

ν−z
2
− = −ν+z+z−

ν+z
2
+ + ν−z

2
− = −(ν+ + ν−)z+z− (6.156)

Substituting in Eq. 6.155, we find:

ln γ± = z+z−
AI

1/2
b

1 +BaI
1/2
b

= −z+|z−|
AI

1/2
b

1 +BaI
1/2
b

(6.157)

where we used that z+ > 0 and z− < 0. The mean ionic activity coefficient expression in the
Debye-Hückel theory is very similar to the activity coefficients of the individual ions
(Eq. 6.150). For very dilute solutions, the second term in the denominator of Eq. 6.157 is
negligible compared to 1, and we have:

ln γ± = −z+|z−|AI1/2b (6.158)

which is known as the Debye-Hückel limiting law, because it is only valid in the limit of
infinite dilution.

The Debye-Hückel activity coefficients (Eqs. 6.150 and 6.157) allow the calculation of the
chemical potentials (Eqs. 6.139 and 6.140) and therefore determine completely the
thermodynamic properties of an electrolytic solution. The Debye-Hückel activity coefficients
are valid in 1:1 electrolyte solutions up to approximately Ib = 0.1mol/kg. The Debye-Hückel
limiting law (Eq. 6.158), which is obtained by further approximating the Debye-Hückel law, is
valid only up to approximately Ib = 0.01mol/kg for 1:1 electrolytes. For electrolytes with
charges higher than one, the concentration range in which the Debye-Hückel theory is valid is
more restricted, since the ions interact more strongly.

For electrolytic solutions with concentrations that exceed the Debye-Hückel’s law range of
validity, empirical relations have been derived for the mean ionic activity coefficients. For
instance, the Davies equation:

log10 γ± = −0.51z+|z−|

[
(Ib/b

◦)1/2

1 + (Ib/b◦)
1/2

− 0.30 (Ib/b
◦)

]
(6.159)

is useful for aqueous electrolytic solutions at room temperature. Other empirical mean ionic
activity coefficient relations for other solvents exist that are used in practice. Note that both in
the Davies equation (Eq. 6.159) and in the Debye-Hückel equation (Eq. 6.157) the activity
coefficients depend only on the ionic strength and the nature of the solvent and not on the
interactions between specific ion pairs. There are more sophisticated models (like the Pitzer
model) where specific ion-ion interactions are taken into account.
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6.8 Chemical Reactions in Solution

6.8.1 General Results

Chemical reactions in solution equilibrium conditions similar to gas mixtures (Section 4.9.2).
Consider the chemical reaction in solution:

0 →
∑

i νi Xi (6.160)

When the reaction is at equilibrium, the sum of the chemical potentials of reactants and
products must be zero (Eq. 4.145): ∑

i

νiµi = 0 (6.161)

For any species involved in the reaction, the chemical potential is written as (Eq. 6.84):

µi = µ◦
i +RT ln ai (6.162)

Substitution in the equation above gives:∑
i

νiµ
◦
i +RT

∑
i

νi ln ai = 0 (6.163)

The first term is the standard reaction Gibbs free energy (Eq. 4.155) and the second term is
rearranged to give:

∆rG
◦ = −RT lnK◦ (6.164)

where we defined the (standard) equilibrium constant as:

K◦ =
∏
i

aνii (6.165)

Note the similarity between this constant and the K◦
p equilibrium constant (Eq. 4.159) for ideal

gas mixtures.

The equilibrium constant (K◦, Eq. 6.165) determines the equilibrium composition for a
chemical reaction in any nonideal homogeneous system. This includes solutions but also
nonideal gas mixtures, in which it translates into:

K◦ =
∏
i

aνii =
∏
i

(
fi
p◦

)νi

=
∏
i

(
ϕixip

p◦

)νi

(6.166)

where fi are the fugacities and ϕi are the fugacity coefficients. Compare to Eq. 4.159 and note
how the equilibrium partial pressures present in the equilibrium constant for an ideal gas
mixture, have been replaced by fugacities in the case of real gas mixtures.

In order to use the equilibrium condition in Eq. 6.165, the activity must be defined, which
requires establishing the standard state of all reactants and products. We will see a few
important examples of how this is done next. Note that the standard state of components in
solution is usually adopted to be a certain state at the same temperature and pressure as the
solution. Therefore, unlike gases, µ◦

i depends on pressure as well as on temperature, and
therefore K◦ also depends on pressure. However, because liquids and solids are relatively
incompressible, this dependence is usually negligible unless gases are involved in the reaction.
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6.8.2 Non-electrolyte Solutions

Let us now assume that the chemical reaction happens between the components of a relatively
dilute solution. Because the solution resembles an ideal-dilute solution, we adopt Henry’s law
standard states. With this choice, the activities, standard chemical potentials, and equilibrium
constants can be variously written in the concentration, molality, or mole fraction scales,
depending on which is most convenient:

∆rG
◦
x =

∑
i

νiµ
◦
i,H = −RT lnK◦

x (6.167)

∆rG
◦
b =

∑
i

νiµ
◦
i,b = −RT lnK◦

b (6.168)

∆rG
◦
c =

∑
i

νiµ
◦
i,c = −RT lnK◦

c (6.169)

where the corresponding equilibrium constants are defined as:

K◦
x =

∏
i

aνii,H =
∏
i

(γi,Hxi)
νi (6.170)

K◦
b = aνAA,H

∏
i ̸=A

aνii,b = (γA,HxA)
νA
∏
i ̸=A

(
γi,b

bi
b◦

)νi

(6.171)

K◦
c = aνAA,H

∏
i ̸=A

aνii,c = (γA,HxA)
νA
∏
i ̸=A

(
γi,c

ci
c◦

)νi
(6.172)

Note that, in the case of the molality and molarity scales, the solvent is separated from the
other components because its standard state is different from the solutes (pure solvent at the
same temperature and pressure as the solution), and therefore its activity is always defined in
terms of the mole fraction aA = γAxA. In reactions in which the solvent is not a reactant or a
product, νA = 0 and this term disappears.

These equilibrium constants can all be used to determine the equilibrium composition of a
reacting mixture, but they are all numerically different and, when reported, it is necessary to
specify what standard state they are referred to. The molality scale is most commonly used in
thermodynamic tables. Note that, in the limit xA → 1, the solution goes to the ideal-dilute
limit so γi → 1 for all i, and the equations for the equilibrium constants reduce to the familiar
expressions:

K◦
x ≈

∏
i ̸=A

(xi)
νi (6.173)

K◦
b ≈

∏
i ̸=A

(
bi
b◦

)νi

(6.174)

K◦
c ≈

∏
i ̸=A

( ci
c◦

)νi
(6.175)

This is a reasonable approximation for reactions happening in dilute non-electrolyte solutions.
Note that the equilibrium constants depend on the nature of the solvent, because the standard
states of the solutes do, even if the solvent concentration does not appear explicitly in the
equilibrium constant equation.

6.8.3 Electrolyte Solutions

For chemical reactions in electrolytic solutions, the preceding equations are also valid although,
in this case, the solution is often not dilute enough to assume that the activity coefficients are
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one. The molality scale is often preferred when dealing with reactions between electrolytes, so
we have:

∆rG
◦ =

∑
i

νiµ
◦
i,b = −RT lnK◦ (6.176)

K◦ = aνAA,x

∏
i ̸=A

aνii,b = (γA,xxA)
νA
∏
i ̸=A

(
γi,b

bi
b◦

)νi

(6.177)

Most often, the solvent is water and the solution is dilute. Since 1L of dilute aqueous solution
at ambient conditions weighs approximately 1 kg, the molality is approximately equal the
molarity (b ≈ c).

For example, in the self-ionization of water reaction:

H2O(l) + H2O(l) H3O
+
(aq) + OH –

(aq) (6.178)

the equilibrium constant is the (standard) water equilibrium constant:

K◦
w =

a(H3O
+)a(OH–)

a(H2O)2
(6.179)

Under usual conditions, the extent of the self-ionization in water is very small, and so the mole
fraction of the solvent (non-dissociated water) is approximately one xA ≈ 1. Since in the
xA → 1 limit γA → 1 and the solvent molecule is neutral (so it converges to this limit faster
than a charged molecule), then aA ≈ xA ≈ 1, and so the equilibrium constant reduces to:

K◦
w = a(H3O

+)a(OH–) =

(
γ(H3O

+)b(H3O
+)

b◦

)(
γ(OH–)b(OH–)

b◦

)
= γ2±

b(H3O
+)b(OH–)

(b◦)2

where γ2± = γ(H3O
+)γ(OH–). Experiments show that at room temperature and 1 bar,

K◦
w = 1× 10−14. If we assume γ± ≈ 1, this gives b(H3O

+) = b(OH–) = 1× 10−7mol/kg.
Application of the Davies equation (Eq. 6.159) with these molalities indicates that
γ± = 0.9996, proving a posteriori the validity of our assumption that the solution is dilute
enough to have γ± ≈ 1. In solutions with higher ionic strength, this may no longer be the case,
and the molalities can deviate from 1× 10−7mol/kg.

Another example is the ionization of a weak acid in water:

HX(aq) + H2O(l) H3O
+
(aq) + X –

(aq) (6.180)

The equilibrium constant for this reaction is the (standard) acid dissociation constant:

K◦
a =

a(H3O
+)a(X–)

a(HX)a(H2O)
≈

(
γ(H3O

+)b(H3O
+)

b◦

)(
γ(X–)b(X–)

b◦

)
(
γ(HX)b(HX)

b◦

) (6.181)

where we have already assumed that the solution is dilute enough that a(H2O) ≈ 1 and, since
HX is uncharged, we can also assume that γ(HX) ≈ 1. Using γ2± = γ(H3O

+)γ(X–), we have:

K◦
a = γ2±

b(H3O
+)b(X–)

b(HX)b◦
(6.182)
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Note that, in general, γ± cannot be assumed to be one. Sometimes the acid dissociation
constant is given with units of molality:

Ka = γ2±
b(H3O

+)b(X–)

b(HX)
(6.183)

and often the pKa are reported instead:

pKa = − log10K
◦
a (6.184)

Examples of pKa for a few weak acids are: 3.20 (HF), 4.76 (HAc), and 9.21 (HCN). The pKa is
defined in analogy with the pH, which is:

pH = − log10 a(H
+) (6.185)

The definition of pH involves activities, not concentrations or molalities. For instance, the pH of
a 0.1M HCl solution decreases (the solution becomes more acidic) when it is diluted with a 5M
solution of CaCl2 because, even though c(H+) decreases, the activity a(H+) is increasing due to the
change in the ionic strength (see McCarty et al. “pH paradoxes: demonstrating that it is not true
that pH = − log[H+]”, J. Chem. Educ. 83 752 (2006)).

Equilibrium constants for other common reactions in solution receive specific names. For
instance, the base dissociation constant is the constant associated with the protonation of a
base. The stability constant is the constant associated with the formation of a complex in
solution. The equilibrium corresponding to a solid in contact with a solution into which it
dissolves is the solubility constant.

In laboratory practice, when studying reaction equilibria of dilute electrolyte solutions, it is
common to “fix” the ionic strength by adding an excess amount of a strong electrolyte. Since
the ionic activity coefficients are mostly determined by the ionic strength (Section 6.7.2),
adding an excess of a strong electrolyte essentially makes the γi and γ± of reactants and
products constant. In turn, this makes the equilibrium constant equation (Eq. 6.165) reduce to:

K◦ =
∏
i

aνii =
∏
i

γνii

(
bi
b◦

)νi

i

(6.186)

K◦
eff = K◦

∏
i

γ−νi
i =

∏
i

(
bi
b◦

)νi

i

(6.187)

As long as the ionic strength is the same in all experiments, the left hand side of this equation
is approximately constant, and so K◦

eff is known as the effective equilibrium constant (or
apparent equilibrium constant).

6.8.4 Reactions Involving Pure Solids and Pure Liquids

The equilibrium conditions (Eqs. 6.161 and 6.165) apply even if some of the reactants or
products are in a phase other than the solution. A particularly important case is reactions
involving pure solids (for instance, a precipitation reaction) or pure liquids. For the pure solid
or liquid, the usual expression for the chemical potential applies (Eq. 6.162) but, in this case,
the standard state is the pure solid or liquid at the same temperature as the solution and
p◦ = 1bar. The chemical potential is:

RT ln ai = µi − µ◦
i = µ∗

i (T, p)− µ∗
i (T, p

◦) =

∫ p

p◦
Vm,idp (6.188)
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where we used that µi = µ∗
i because the solid or liquid is pure in its own phase. Since solids

and liquids are relatively incompressible, we can assume Vm,i is constant for a moderate
pressure range and write:

ln ai =
(p− p◦)Vm,i

RT
(6.189)

Because Vm,i is small for solids and liquids, at moderate pressures the right hand side of this
equation is approximately zero and ai ≈ 1.

Example. Water at room temperature and 1 bar has molar volume:

Vm =
V

n
=

VM

m
=

M

ρ
=

18.015 28 g/mol

1 g/cm3
= 18.015 28 cm3/mol

The activity at room temperature and 100 bar is:

ai = exp

(
(p− p◦)Vm,i

RT

)
= exp

(
(100 bar− 1 bar)18.015 28 cm3/mol× 1m3

1×106 cm3

8.314 J/K/mol× 298.15K

)
= 1.000 000 72

Therefore, the activity of water can be assumed to be equal to one except at very high pressure.

Because ai ≈ 1 for a pure solid or liquid unless the pressure is exceptionally high, the
corresponding activity disappears from the equilibrium expression. Note, however, that the µ◦

i

still enters the ∆rG
◦ because the standard chemical potential is not zero.

For example, the thermal decomposition of calcite releases CO2 gas:

CaCO3(s) CaO(s) + CO2(g) (6.190)

The equilibrium condition (Eq. 6.165) is:

K◦ =
a(CaO(s))a(CO2(g))

a(CaCO3(s))
≈ a(CO2(g)) (6.191)

where we used a(CaO(s)) ≈ 1 and a(CaCO3(s)) ≈ 1. Assuming ideal gas behavior
(ai = fi/p

◦ ≈ pi/p
◦, Eq. 6.113), we have that the equilibrium constant is numerically equal to

the pressure of CO2 in equilibrium with the solid phases at the decomposition temperature:

K◦ ≈
p(CO2(g))

p◦
(6.192)

However, this equilibrium constant involving only the pressure of CO2 is related to the
standard reaction Gibbs free energy (Eq. 6.164):

∆rG
◦ = −RT lnK◦ = µ◦(CaO(s)) + µ◦(CO2(g))− µ◦(CaCO3(s))

= G◦
m(CaO(s)) +G◦

m(CO2(g))−G◦
m(CaCO3(s)) (6.193)

where we used µ◦ = G◦
m because every species in this reaction are alone and pure in their own

phase. Like all reactions, the decomposition of calcite may be carried out to completion if the
equilibrium condition cannot be met. For instance, if the container in which the calcite is being
heated is open such that the pressure of CO2 cannot build up and reach K◦ or if there is not a
large enough amount of starting calcite to reach that pressure.

Another example is the solubility of a mostly insoluble salt. For instance, the solubility
reaction in water is:

Mν+Xν–(s) ν+ Mz+
(aq) + ν− Mz–

(aq) (6.194)
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The equilibrium condition (Eq. 6.165) is:

K◦ =
(a+)

ν+(a−)
ν−

a(Mν+Xν–(s))
≈ γν±

(
b+
b◦

)ν+ (b−
b◦

)ν−

(6.195)

where, as above, the activity of the pure solid is assumed equal to one. When this equilibrium
constant is written with molality units, it is known as the solubility product (Ksp) of the
solid:

Ksp = γν± (b+)
ν+ (b−)

ν− (6.196)

For salts that are only very slightly soluble, the ionic strength of the solution is small and
γ± ≈ 1. In addition, if the solvent is water, b ≈ c, which leads to the familiar expression:

Ksp ≈ (c+)
ν+ (c−)

ν− (6.197)

However, it is important to point out that this equation is not valid if the solvent has a
non-negligible ionic strength (for instance, if there are other salts dissolved) or if there is
significant ionic association in solution (for example, if the electrolyte is not 1:1).

6.8.5 Temperature and Pressure Dependence of the Equilibrium Constant

The temperature dependence of the equilibrium constant:

lnK◦ = −∆rG
◦

RT
(6.198)

is given by the van’t Hoff equation (Eq. 4.170):

d lnK◦

dT
=

∆rH
◦

RT 2
(6.199)

The derivation is exactly the same as for K◦
p in Section 4.9.3. Same as we did for the

Clausius-Clapeyron equation (Eq. 5.15), the van’t Hoff equation can be re-written in a more
usable form using the chain rule:

d lnK◦

dT
=

d lnK◦

d(1/T )

d(1/T )

dT
=

d lnK◦

d(1/T )
×
(
− 1

T 2

)
=

∆rH
◦

RT 2
(6.200)

from where:
d lnK◦

d(1/T )
= −∆rH

◦

R
(6.201)

Because the standard states of reactants and products depend on pressure in general, the K◦,
unlike K◦

p , depends also on pressure, albeit only very slightly.
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Chapter 7

Electrochemistry

7.1 Electrochemical Systems

An electrochemical system is a system in which there is a difference in electric potential
between phases. The electrochemical systems of interest to us are composed of conducting
phases such as metals, electrolytic solutions, molten salts,... and we want to examine the
thermodynamics of processes involving movement of charges between different phases, perhaps
carrying out work as a result of this movement. A simple example of an electrochemical system
is a household battery in which a spontaneous chemical reaction is used to drive electrons from
the negative to the positive terminals, effecting work on the environment, like powering an
electronic device.

The electric potential at point r (ϕ(r)) is defined as the work required to bring a (positive) unit
test charge from infinity to that point. The electric potential energy (V ) of a particle with
charge Q is therefore:

V = Qϕ (7.1)

As a consequence of this definition, the work required to move a charge between point a and
point b is given by the charge Q times the potential difference (∆ϕ) between those two points:

wb→a = Q∆ϕ (7.2)
∆ϕ = ϕa − ϕb (7.3)

This movement is reversible in a thermodynamic sense because the opposite process has
opposite work (wa→b = −wb→a).

The force experienced by a charge in an electric field E is given by:

F = QE (7.4)

where the electric field is minus the gradient of the electric potential:

E = −∇ϕ (7.5)

The SI unit of charge is the coulomb (C) and the unit of potential is the volt (V), which is
defined as 1V = 1 J/C (see Eq. 7.1). The SI unit of electric field is V/m (Eq. 7.5) or N/C
(Eq. 7.4). Negative charges, like electrons, placed in a non-uniform electric field move from
regions of low electric potential to regions of high potential following the electric field lines.

The phases present in the electrochemical systems of interest to us are usually good conductors
of electricity, which means that charges in the bulk of these phases are relatively free to move
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Figure 7.1: Two electrochemical systems. Left: metallic Cu in contact with an aqueous CuSO4 solution.
Right: two metals (Cu and Fe) in contact. Each phase has a different electric potential (ϕa and ϕb).

around. Since a conducting phase in thermodynamic equilibrium must have no net current
flowing inside, the net electric forces on all the charges inside the phase must be zero, and
therefore the electric field in the interior of a conductor must also be zero (Eq. 7.4). Because
the electric field is the gradient of the potential (Eq. 7.5), this means that ϕ must be the same
throughout the bulk of a conducting phase in equilibrium. If the phase is charged (i.e. not
electrically neutral), then the charges must be distributed over the surface of the phase, to
minimize the repulsion between like charges. The electric potential in the interior of a
conductor phase in equilibrium is known as the inner potential or Galvani potential.

7.2 The Electrochemical Potential

By definition, an electrochemical system must be composed of at least two phases in contact
that have different electric potentials. The electrochemical systems of interest to us have the
property that at least one charged species may move between phases in contact. Two examples
of such systems are shown in Figure 7.1. The system on the left shows an aqueous CuSO4
solution in contact with metallic Cu. In this system, the Cu atoms can drop two electrons in
the metal and enter the solution as Cu2+ cations but the electrons cannot move into the
solution. In the system on the right of Figure 7.1, we have two metals (Cu and Fe) in contact
and electrons can move from one to the other, but the Fe and Cu atoms cannot. In either of
these two examples, because the inner potential of the two phases in contact is different, there
is a potential difference that drives the charges from one phase to the other. The charge
transfer continues, and both phases become more electrically charged, until the system achieves
equilibrium at the point at which the Gibbs free energy of the whole system is a minimum. The
electric potential difference between phases is, in general, in the order of a few volts, and it is
possible to show that the amount of charged species transferred between phases is so small as
to be chemically undetectable.

The potential difference between two phases (∆ϕ = ϕa − ϕb) depends on the thermodynamic
state: temperature, pressure, the nature of the two phases in contact and their composition, as
well as the distribution of charges in the vicinity of the interface between both phases. In
general, this potential difference cannot be measured directly because any attempt at doing so
necessarily introduces a new interface, and therefore the ∆ϕ measured no longer corresponds to
just the interface under study. For instance, if we attach a potentiometer to each of the phases
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in the right system of Figure 7.1, we create two new interfaces (potentiometer/Fe and
potentiometer/Cu) with their own ∆ϕ, which contributes to the overall potential difference.
Single interface potential differences can be measured in the particular case when the two
phases in contact have similar compositions, and can also be calculated using statistical
mechanical models.

Consider a phase α with potential ϕα that undergoes a reversible change in composition. If the
components entering the system are uncharged, then the change in Gibbs free energy for this
process is given by Eq. 4.108:

dG = −SdT + V dp+
∑
i

µidni (7.6)

Now assume each component molecule has a charge zie, where e is the charge of an electron in
absolute value (e = 1.602 176 634× 10−19C) and zi is the charge number of this species. For
instance, an electron has zi = −1, a Zn2+ cation has zi = +2, and an SO 2–

4 anion has zi = −2.
Since zie is the charge of a single molecule, the charge of an amount ni of the component is:

Q = niNA × zie = niziF (7.7)

where F is the Faraday constant, the charge of one mole of electrons:

F = eNA = 96 485C/mol (7.8)

When an infinitesimal amount dni of component i is introduced into the system, the amount of
charge added is:

dQ = ziFdni (7.9)

Since the inner potential of the phase is ϕα, this process involves additional non p–V work
equal to (Eq. 7.1):

dwnon-pv = ϕαdQ (7.10)

This additional work changes the internal energy via the first law (dU = dq + dw) and,
therefore, also the Gibbs free energy (Eq. 7.6), which gives:

dG = −SdT + V dp+
∑
i

µidni + ϕαdq = −SdT + V dp+
∑
i

µidni + ziFϕαdni (7.11)

Rearranging, we find:
dG = −SdT + V dp+

∑
i

(µi + ziFϕα)dni (7.12)

We define the electrochemical potential µ̃i as:

µ̃i = µi + ziFϕα (7.13)

With this definition, the differential of G for a phase with nonzero electric potential becomes:

dG = −SdT + V dp+
∑
i

µ̃idni (7.14)

which is entirely analogous to Eq. 7.6. Note that in the case when the component is not
charged (zi = 0) or the inner potential is zero ϕα = 0, the electrochemical potential reduces to
the usual chemical potential (µ̃i = µi) and Eq. 7.14 to Eq. 7.6.

Following the same procedure as in Section 4.8 it is possible to show that µ̃i replaces µi in all
material equilibrium conditions. In particular, in a closed system, two phases α and β are in
equilibrium if:

µ̃α
i = µ̃β

i (7.15)
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for each species i in the two phases (compare to Eq. 4.131). If there is a reaction happening in
a closed system, the equilibrium condition is:∑

i

νiµ̃i = 0 (7.16)

which is the analogue of Eq. 4.145 for electrochemical systems. An electrochemical system is
said to be in electrochemical equilibrium if Eqs. 7.15 and 7.16 hold for all phases in contact
and, as a consequence, there is no net flow of charges within the system.

In the particular case when all the species involved in the reaction are in the same phase α, we
have:

0 =
∑
i

νiµ̃i =
∑
i

νi(µi + ziFϕα) =
∑
i

νiµi +
∑
i

νiziFϕα (7.17)

=
∑
i

νiµi + Fϕα

(∑
i

νizi

)
(7.18)

but for any chemical reaction the sum of the charges of the reactants equals the sum of the
charges of the products, and therefore: ∑

i

νizi = 0 (7.19)

Hence, the equilibrium condition for a chemical reaction in an electrochemical system
(Eq. 7.16) reduces to the usual equilibrium condition (Eq. 4.145):∑

i

νiµ̃i =
∑
i

νiµi = 0 (7.20)

if all the species involved in the reaction are in the same phase.

Lastly, consider again the systems in Figure 7.1. In equilibrium, the Cu2+ cations (left system,
zi = +2) and the electrons (right system, zi = −1) follow Eq. 7.15:

µ̃α
i = µ̃β

i (7.21)

µα
i + ziFϕα = µβ

i + ziFϕβ (7.22)

Rearranging, we find:
µα
i − µβ

i = ziF (ϕβ − ϕα) (7.23)

Therefore, if the component is uncharged (zi = 0) or if the electric potential of the two phases
in contact is equal (ϕβ = ϕα), the phase equilibrium condition reduces to the usual expression
(Eq. 4.131):

µα
i = µβ

i (7.24)

Instead, in the systems depicted in Figure 7.1, when the two phases are first put in contact,
there is a flow of charge that changes the electric potential of both phases until both sides of
Eq. 7.23 (and also Eq. 7.15) equalize.

7.3 Electrochemical Cells

7.3.1 Definitions

The electrochemical systems we are interested in comprise two or more interfaces, and involve a
reduction-oxidation (redox) reaction, which is a chemical transformation in which
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Figure 7.2: A Daniell cell. Zn oxidizes on the left electrode and the electrons travel through the wire
to the right electrode, where Cu is reduced.

electrons are transferred between reactants and products. A simple example of a redox reaction
happens between metallic Zn in contact with a CuSO4 solution:

Cu 2+
(aq) + Zn(s) Zn 2+

(aq) + Cu(s) (7.25)

In this reaction, the metallic Zn slowly dissolves and metallic Cu is deposited from the solution.
The species that loses electrons (Zn in this case) is oxidized and the species that gains
electrons (Cu2+) is reduced. Conversely, the Zn in this example can be thought of as a
reducing agent or reductant and the Cu2+ is the oxidizing agent or oxidant. While the
above is a particularly simple electron transfer reaction, other redox reactions involve more
extensive chemical changes in reactants and products that result from the electron transfer and
involve a mechanism with multiple steps. For instance, the reduction of nitrate anions in
solution gives:

2 NO –
3 + 10 e– + 12 H+ N2 + 6 H2O (7.26)

Redox reactions are essential in many fields, particularly in biochemistry where they are
involved in many biologically important processes such as cell respiration.

Now we separate the species involved in the redox reaction (Eq. 7.77) into two different
containers as shown in Figure 7.2. The left container has metallic Zn in contact with a ZnSO4
solution. The right container has metallic Cu in contact with a CuSO4 solution. Both metals
are connected via a copper wire through which the electrons can flow. Because the overall
reaction (Eq. 7.77) is spontaneous, electrons move over the copper wire joining the two cells,
carrying out the reaction. During the reaction, a Zn atom releases its two electrons and
dissolves as Zn2+ in the solution. The electrons travel through the wire to the right container
and react with a Cu2+ atom close to the surface, depositing the neutral Cu atom on the metal.
Since two electrons have migrated from the left to the right container, the right container is
now negatively charged. To prevent a build up of charge that would change the inner potentials
of each phase and stop the reaction (Eq. 7.16), the wall separating the two containers is porous
so SO 2–

4 anions and Zn2+ cations can travel through it, balancing the charges and maintaining
the electrical neutrality of each phase. The existence of the porous union between the two
aqueous solutions closes the circuit and allows the reaction to happen.

Since the redox reaction is physically separated into two distinct compartments where
reduction and oxidation take place, we can talk about the corresponding half-reactions, which
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in this case are:
Cu2+ + 2 e– Cu (7.27)

Zn2+ + 2 e– Zn (7.28)

Half-reactions are customarily expressed as reductions (with the electrons as reactants). The
overall redox reaction (Eq. 7.77), which is a combination of one half-reaction minus the other,
is called the cell reaction:

Cu2+ + Zn Cu + Zn2+ (7.29)

The two species involved in a half-reaction are known as a redox couple. In the examples
above, the redox couples are Cu2+/Cu and Zn2+/Zn.

The union of the compartments containing the two half reactions electrochemical cell. For
instance, the system in Figure 7.2 is an electrochemical cell known as the Daniell cell. If the
redox reaction happening in an electrochemical cell is spontaneous, the cell operates as a
galvanic cell (or voltaic cell). In a galvanic cell, the electric potential in the container where
oxidation takes place is lower than the container where the reduction happens. If the circuit is
closed, electrons flow through the wire, perhaps effecting some work on the environment. It is
also possible to apply a reverse electric potential to the two terminals of an electrochemical cell
such that the electrons flow in the opposite direction. This results in the cell carrying out a
reaction that would normally not be spontaneous. In this case the system acts as an
electrolytic cell and the process is known as electrolysis. A common example is the
electrolysis of water to form H2 and O2 by using an electrical current:

2 H2O + 2 e– H2 + 2 OH– (7.30)

4 OH– 2 H2O + O2 + 4 e– (7.31)

which gives the global equation:
2 H2O O2 + 2 H2 (7.32)

In the rest of this chapter, we will consider only galvanic cells. A particular type of galvanic
cell is a fuel cell, in which the reactants are continuously fed to each electrode from outside
the cell.

An electrochemical cell must contain at least one phase that conducts electricity by the
movement of ions in its interior, known as an ionic conductor or electrolyte. Otherwise,
electrons would flow within the cell and carry out the spontaneous redox reaction, even if there
is no wire connecting the terminals. Electrolytes are often solutions, as in the case of the
Daniell cell (Figure 7.2), but they can also be solids (solid-state electrolyte), gels (as in a
lithium-ion battery), or ionic liquids such as molten salts, the only condition being that they
conduct electricity through ionic mobility. The cell also comprises electronic conductors, which
conduct electricity by the movement of electrons, and are often, but not necessarily, metals.
The electronic conductors in direct contact with the electrolyte where the redox half-reactions
occur are known as electrodes, and the combination of electrode plus electrolyte forms an
electrode compartment or half-cell. Electrodes may be inert, when they do not participate
in the reaction other than by carrying the electrons, but they can also act as catalysts or they
can be involved in the reaction as reactants or products, as is the case in the Daniell cell
(Figure 7.2).

The term “electrode” is often used to describe the whole half-cell, not just the electronic conductor.
For instance, the “silver chloride electrode” typically refers to the metal (Ag or Pt coated with Ag,
plus deposited AgCl), to the solution (water saturated with KCl and dissolved Ag+ cations), to
the casing that contains both elements, and to the filter that allows the exchange of ions with the
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external electrolyte. It is usually clear which meaning of the term “electrode” is being used based
on the context.

The electrode where the oxidation takes place is known as the anode and the electrode where
the reduction happens is the cathode. In the Daniell cell, the anode is on the left (oxidation:
Zn − 2 e– Zn2+) and the cathode is on the right (reduction: Cu2+ + 2 e– Cu).

Lastly, the half-cell may be connected to the rest of the electrochemical system through
additional phases. For convenience, metals, known as terminals, are often connected to the
electrodes to which the wire is connected. In the rest of the chapter, for simplicity, we will
assume the terminals of both half-cells are made of the same metal, and therefore can be
assumed to have the same composition. The electrolyte can be separated from other
electrolytes in the cell by an interface known as a liquid junction. The porous union between
the electrolytes in a Daniell cell (Figure 7.2) is a liquid junction. A salt bridge is a double
liquid junction built with concentrated KCl solution in agar gel that is useful because it has a
very small potential across the interface, we discuss salt bridges later.

7.3.2 Cell Potential

For a galvanic cell, we define the cell potential (also the electromotive force, or emf),
Ecell, as the difference in electric potential between the cathode and the anode terminals when
no current is flowing through the cell:

Ecell = ϕ(Tcathode)− ϕ(Tanode) (7.33)

The cell potential has the same units as the electric potential, volts (V) in the SI. The
zero-current condition can be achieved by opening the circuit (i.e. by disconnecting the
terminals) or by applying an electric potential to the terminals that is equal, but reverse, to
their cell potential, such that the cell is at equilibrium. The latter method is used by a
potentiometer, which is a device used to measure cell potentials that draws zero current from
the cell when it is in operation. The zero-current condition is important to the definition of cell
potential because, if a non-zero current is flowing, the electric potential between the terminals
decreases as a result of the resistance of the cell to the charge flow (the internal resistance).
The study of cells and electrodes with non-zero current, and therefore of the rate of the redox
reactions and half-reactions happening at them, is the purview of electrochemical kinetics,
which is an important field for many analytical techniques (e.g. voltammetry). In the rest of
this chapter, we consider all the cells are under open-circuit (zero current) conditions.

The cell potential given by Eq. 7.33 can also be interpreted as the sum of the potential
differences across all the interfaces in the galvanic cell. This happens because a galvanic cell
conducts electricity by moving charges through conducing phases which, as noted in
Section 7.1, have constant ϕ throughout their bulk. For instance, consider a cell:

Ta | Ea | I | Ec | Tc

where T are the anode (a) and cathode (c) terminals, E are the electrodes, and I is a shared
electrolyte (ionic conductor). Then the cell potential can be written:

Ecell = ϕ(Tc)− ϕ(Ta)

= [ϕ(Tc)− ϕ(Ec)] + [ϕ(Ec)− ϕ(I)] + [ϕ(I)− ϕ(Ea)] + [ϕ(Ea)− ϕ(Ta)] (7.34)

Note that, by Eq. 7.23, the electric potential difference across each of the interfaces composing
the cell is directly proportional to the chemical potential difference for the electrically charged
species able to cross the interface, and therefore the cell potential could also be written as a
sum of chemical potential differences across all interfaces in the cell.
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7.3.3 Cell Notation

Conventions exist regarding how to write text diagrams that represent electrochemical cells and
half-cells (some of them contained in the IUPAC gold book):

1. The anode (oxidation reaction) is written on the left of the diagram. The cathode
(reduction) is written on the right. The terminals are often omitted.

2. A phase boundary is indicated by a vertical bar (|). If the phase boundary is between two
liquids (a liquid junction), a dashed vertical bar is used ( ).

3. A double vertical dashed line ( ) represents a liquid junction that gives a negligible
contribution to the cell potential (e.g. a salt bridge). (Sometimes a double vertical bar (||)
is used instead.)

4. Two species in the same phase are separated by a comma.

5. The aggregation state of each phase (s,l,g,aq) is indicated in parentheses. If the species
are reactive and not in their standard states (1 bar for gases and 1mol/kg for solutions),
their pressures or concentrations are indicated in parentheses.

Since the cathode is on the right of the diagram and the anode is on the left, Eq. 7.33 can be
written as:

Ecell = ϕR − ϕL (7.35)

where “R” represents the right terminal and “L” is the left terminal in the cell diagram.

Applying these rules, the Daniell cell in Figure 7.2 is represented:

Zn(s) | ZnSO4(aq) CuSO4(aq) | Cu(s) (7.36)

If, instead of being separated by a porous union the two compartments were separated by a salt
bridge, it would be:

Zn(s) | ZnSO4(aq) CuSO4(aq) | Cu(s) (7.37)

Another example is the “Harned cell”, where the anode is the standard hydrogen electrode and
the cathode is the silver chloride electrode (see below), used for the calibration of the latter:

Pt(s) | H2(g) | HCl(aq) | AgCl(s) | Ag(s) (7.38)

where the cell reaction is:

1
2 H2(g) + AgCl(s) HCl(aq) + Ag(s) (7.39)

and the two electrodes share the same electrolyte. An example of a cell involving the calomel
electrode:

Zn(s) | ZnCl2(0.01mol/kg) | Hg2Cl2(s) | Hg(l) (7.40)

where, again, the two half-cells share electrolyte. The cell reaction is:

Hg2Cl2(s) + Zn(s) 2 Hg(l) + 2 Cl–(aq) + Zn2+(aq) (7.41)

7.3.4 Reversible Cells and Reversible Electrodes

The fundamental equation for the change in Gibbs energy (Eq. 7.14) is only valid for a
reversible process so, in order to be able to apply it to a galvanic cell, the cell needs to be able
to operate reversibly. Consider an electrochemical cell that is held in equilibrium (zero-current)
by applying an electrical potential to its terminals that is the exact opposite of the cell
potential. A small change in the applied potential disrupts equilibrium and makes charge flow
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through the cell. A reversible cell is one in which the cell at equilibrium can be made to
operate as a galvanic cell (carrying out the spontaneous reaction) by an infinitesimal change in
the applied electric potential and then it can be made to operate as an electrolytic cell
(carrying out the reverse reaction) by applying an infinitesimal change in the applied electric
potential of opposite sign, making the electrochemical cell follow the same sequence of
thermodynamic states in the opposite direction.

For example, the Daniell cell in Figure 7.2 is not a reversible cell. Assume the cell is forced to
have zero current by an external electric potential that exactly opposes the cell potential. The
applied potential is changed infinitesimally so that the cell operates like a Galvanic cell:

Cu2+ + Zn Cu + Zn2+ (7.42)

As it operates, the metallic Zn at the anode oxidizes to Zn2+ and dissolves in the electrolyte,
and the Cu2+ in the electrolyte reduces to Cu and is deposited at the cathode. The anode
compartment becomes positively charged and the cathode compartment is negatively charged
as a consequence, Zn2+ cations (and SO 2–

4 anions) cross the porous barrier into the other
compartment. Now we operate the Daniell cell in reverse:

Cu + Zn2+ Cu2+ + Zn (7.43)

by infinitesimally changing the applied electric potential in the opposite direction. The role of
cathode and anode are reversed, Cu is oxidized to Cu2+, which dissolves, and Zn2+ reduces to
Zn and is deposited. While these steps are the reverse of the previous ones with the cell
operating as a galvanic cell, in this case the Cu compartment becomes positively charged and,
consequently, Cu2+ cations cross the porous barrier into the Zn compartment. Note this last
step is not the reverse of the same step with the cell operating under the opposite potential (it
was Zn2+ crossing the barrier), and therefore the cell is not reversible. The irreversibility of the
Daniell cell arises from the fact that there is a liquid junction connecting two different
electrolytes. Therefore, for a cell to be reversible the two electrodes must share the same
electrolyte, which must be the only electrolyte in the cell. We will see later how to take into
account the irreversibility caused by a liquid junction.

A necessary condition to build a reversible cell is that both electrodes are themselves reversible.
A reversible electrode is defined similarly to a reversible cell: it is an electrode which, by
infinitesimally changing the applied potential, can be made to operate in either direction,
following the same sequence of the thermodynamic states. Since a reversible electrode must be
able to carry out both the direct and the reverse half-reactions, all reactants and products must
be present in the compartment of a reversible electrode. Common types of reversible electrodes
are:

Metal/metal ion electrodes. A metal M is in contact with a solution containing its cations
(Mz+).

Half-reaction: Mz+(aq) + ze– M(s) Diagram: M(s)|Mz+(aq) (7.44)

Example: the Zn/Zn2+ and Cu/Cu2+ electrodes in the Daniell cell.

Amalgam electrodes. An amalgam (solution of M in Hg) in contact with a solution
containing the metal ions (Mz+).

Half-reaction: Mz+(aq) + ze– M(Hg) Diagram: M(Hg)|Mz+(aq) (7.45)

This electrode is typically used for metals that react with the electrolyte and therefore cannot
be built as metal/metal ion electrodes. For instance, the Na(Hg)/Na+ electrode (metallic
sodium reacts with water).
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Redox electrodes. The electrode half-reaction occurs between two species in solution and the
metal is inert.

Half-reaction: Ax+(aq) + (x z)e– Az+ Diagram: M|Az+(aq),Ax+(aq) (7.46)

The name is slightly misleading since all electrodes involve a redox half-reaction of some sort.
Example: Fe3+/Fe2+.

Metal/insoluble salt. A metal M in contact with its mostly insoluble salt MX and in contact
with a solution of X– anions.

Half-reaction: MX(s) + e– M(s) Diagram: M(s)|MX(s)|X–(aq) (7.47)

These electrodes have the advantage that they can be utilized without a liquid junction and are
therefore useful for building reversible cells. If the solution is saturated in X– anions, their
contribution to the cell potential is stable, making them useful as reference electrodes. Two
popular examples are the (saturated) calomel electrode (Hg(s)|Hg2Cl2(s)|Cl–(aq)) and the
more environmentally friendly (saturated) silver chloride electrode
(Ag(s)|AgCl(s)|Cl–(aq)). In the saturated versions of these electrodes, the solution is saturated
by putting it in contact with excess solid KCl with Cl– concentration at about 4.5M.

Gas electrodes. A gas X2 in contact with an inert metal and a solution containing its ions
(X+ or X–).

Half-reaction: 1
2 X2(g) + e– X–(aq) Diagram: M(s)|X2(g)|X–(aq) (7.48)

Half-reaction: X+(aq) + e– 1
2 X2(g) Diagram: M(s)|X2(g)|X+(aq) (7.49)

An example of gas electrode is the hydrogen electrode (Pt|H2(g)|H+(aq)) in which hydrogen
is bubbled through an acidic solution in contact with Pt and that is used to define the standard
electrode potentials, and the chlorine electrode (Pt|Cl2(g)|Cl–(aq)).

Ion-selective membrane electrodes. These electrodes comprise a solid membrane whose
potential difference is sensitive to the activity of a particular ion on both of its sides. The most
popular membrane electrode is the glass electrode, which has a bulb of thin glass whose
potential difference is dictated by the concentration of H+, and is therefore used to measure
pH. Other ion-selective membrane electrodes are used to determine concentrations of ions that
are difficult to measure by chemical means, including F–, Na+, K+, and NO –

3 .

7.4 The Nernst Equation

Consider the reversible cell:

Pt|H2(g)|HCl(aq)|AgCl(s)|Ag|Pt (7.50)

with its terminals in open-circuit. The cell reaction is:

2 AgCl(s) + H2(g) 2 Ag(s) + 2 HCl(aq) (7.51)

Since the cell is in open-circuit, the electrons cannot travel from one terminal to the other
outside the system so, instead of the above, we consider the electrochemical reaction:

2 AgCl(s) + H2(g) + 2 e–(PtR) 2 Ag + 2 HCl + 2 e–(PtL) (7.52)

where the number of electrons at the right (R, cathode) and left (L, anode) terminals required
to carry out the reaction are noted explicitly. We define the charge number (or electron
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number), n, as the number of electrons transferred for every step of the electrochemical
reaction as written. In the example above, n = 2.

Because the cell is reversible, the equilbrium equations in Section 7.2 apply and all adjacent
phases are in electrochemical equilibrium. In particular, the equilibrium condition is (Eq. 7.16):∑

i

νiµ̃i = 0 (7.53)

where the sum i goes over the molecular species as well as the electrons on both sides of the
electrochemical reaction. Separating the electrons from the molecular species (“mol”):

nµ̃e−(L)− nµ̃e−(R) +

mol∑
i

νiµ̃i = 0 (7.54)

where we used that the stoichiometric coefficients of the electrons on the left electrode is +n
and for the electrons on the right electrode it is −n. Using the definition of electrochemical
potential (Eq. 7.13), we have:

mol∑
i

νiµ̃i = n(µe−(R)− FϕR)− n(µe−(L)− FϕL)

= n(µe−(R)− µe−(L))− nF (ϕR − ϕL) (7.55)

We assumed the metals the terminals are made of are the same, so a reasonable approximation
is to assume their temperature, pressure, and composition is equivalent and therefore the two
chemical potentials for the electrons are equal. Therefore the first term in the equation above
vanishes:

mol∑
i

νiµ̃i = −nFEcell (7.56)

where we used the definition of the cell potential for a conventional cell diagram
(Ecell = ϕR − ϕL, Eq. 7.35). For the molecular species, either the species are neutral, in which
case µ̃i = µi because zi = 0, or they are ionic, in which case they must be within the only
electrolyte present in this cell, because the cell is reversible. We have seen in Section 7.2 that
the electroneutrality of a chemical reaction and the fact that the ionic spaces are all within the
same phase means that:

mol∑
i

νiµ̃i =

mol∑
i

νiµi (7.57)

and therefore Eq. 7.56 reduces to:

mol∑
i

νiµi = −nFEcell (7.58)

Note the left hand side is the difference between products and reactants of the chemical
potentials in the cell reaction. Equation 7.58 is valid only for a reversible cell with terminals
that have the same composition and at zero current (open circuit).

For a homogeneous system undergoing a reversible composition change at constant temperature
and pressure caused by a chemical reaction (Eq. 4.120):

dG =
∑
i

µidn
α
i =

∑
i

νiµidξ (7.59)
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where we used the extent of the reaction differential (Eq. 4.141). Therefore, the left hand side
in Eq. 7.58 equals the derivative of G with respect to the extent of the reaction:(

∂G

∂ξ

)
T,p

=

mol∑
i

νiµi = −nFEcell (7.60)

where the sum runs over the species in the cell reaction (i.e. the same as in the electrochemical
reaction minus the electrons). Note the partial derivative on the left hand side of Eq. 7.60 is
zero for a reaction at equilibrium, because G is a minimum and

∑
i νiµi = 0. Therefore, if the

cell reactions is at thermodynamic equilibrium, Ecell = 0. In contrast, a reversible
electrochemical cell may still be at electrochemical equilibrium if the circuit is open and no
electrons are flowing, even if the cell potential is not zero.

In many sources, the left hand side of equation 7.60 is written as:

∆rG = −nFEcell (7.61)

This is somewhat inconsistent with our definition of ∆rG
◦, which is the difference in G between

products and reactants in their standard states (Eq. 4.155):

∆rG
◦ =

∑
i

νiµ
◦
i (7.62)

Note the chemical potentials for both reactants and products in Eq. 7.60 are calculated at the same
extent ξ within the reacting mixture, not for pure separated products or reactants. Therefore, we
follow Levine’s recommendation and prefer using dG/dξ for this quantity.

For the species in the electrolyte, the chemical potentials are given by (Eq. 6.84):

µi = µ◦
i +RT ln ai

where ai are the Henry’s law activities in the molality scale, as usual for electrolytes.
Substituting in Eq. 7.58:

−nFEcell =
∑
i

νiµi =
∑
i

νi(µ
◦
i +RT ln ai) =

∑
i

νiµ
◦
i +RT

∑
i

νi ln ai

= ∆rG
◦ +RT ln

(∏
i

aνii

)
= ∆rG

◦ +RT lnQ◦ (7.63)

where we dropped the superscript “mol” for simplicity—all summations run over molecular
species from now on—and we used the definition of the standard reaction Gibbs free energy
(Eq. 4.155) for the cell reaction and defined the standard reaction quotient (Q◦) for the cell
reaction as:

Q◦ =
∏
i

aνii (7.64)

by analogy with Eq. 4.173. We define the standard cell potential as:

E◦
cell = −∆rG

◦

nF
(7.65)

from where Eq. 7.63 is rearranged to give:

Ecell = E◦
cell −

RT

nF
lnQ◦ = E◦

cell −
RT

nF
ln

(∏
i

aνii

)
(7.66)

This is the Nernst equation, which relates the cell potential to the activities of reactants and
products involved in the cell reaction.

There are several things to note about the Nernst equation:
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• The Nernst equation written as in Eq. 7.66 is valid only for reversible cells. In particular,
the cell must have a single electrolyte and no liquid junctions. Also, the Nernst equation
is valid only when no current is flowing through the cell, either because the cell is in open
circuit (the terminals are not connected) or because an external electric potential is being
applied that exactly matches minus the cell potential.

• In general, a galvanic cell in a zero current (open circuit) state is in electrochemical
equilibrium (no current is flowing) but not in thermodynamic equilibrium, because the
cell reaction can still occur. Only when Q◦ = K◦ and ai = aeq

i does the cell reaction
achieve material equilibrium, in which case the two terms on the right hand side of the
Nernst equation cancel out and Ecell = 0.

• The value of the cell potential is independent of how we write the cell reaction. This is
because the electron number (n) in the denominator of the second term in Eq. 7.66 can
enter the logarithm and divide the exponents of the activities.

• The standard cell potential (Eq. 7.5) is simply a way to rewrite the standard reaction
Gibbs free energy. This means that E◦

cell can be calculated from the ∆rG
◦ (for instance,

from standard formation free energies of reactants and products) or, much more
commonly, ∆rG

◦ for chemical reactions can be calculated from the corresponding E◦
cell

obtained from potentiometric measurements. In particular, a positive E◦
cell corresponds to

an exergonic reaction (∆rG
◦ < 0) and a negative E◦

cell corresponds to an endergonic
reaction (∆rG

◦ > 0). In particular, E◦
cell, like ∆rG

◦, depends on temperature and only
very slightly on pressure, and not on the composition of the cell.

• The cell potential on the left hand side of the Nernst equation (Eq. 7.66) is still the sum
of the electric potential differences across all interfaces in the reversible cell (Eq. 7.34)

Example. For the Harned cell:

Pt(s) | H2(g) | HCl(aq) | AgCl(s) | Ag(s) (7.67)

with cell reaction:
1
2 H2(g) + AgCl(s) H+(aq) + Cl–(aq) + Ag(s) (7.68)

the Nernst equation gives the cell potentials as:

Ecell = E◦
cell −

RT

nF
ln

(
a(H+)a(Cl–)
a(H2)1/2

)
(7.69)

Note the activities of the pure solids are approximately one and a(H2) = f(H2)/p
◦ where f(H2) is

the fugacity of the gas, equal to its pressure if we assume the gas is ideal.

Using the relation between ∆rG
◦ and the equilibrium constant (Eq. 6.164), the Nernst equation

(Eq. 7.66) can be written as:

Ecell = −∆rG
◦

nF
− RT

nF
lnQ◦ =

RT

nF
ln

(
K◦

Q◦

)
(7.70)

Therefore, a positive cell potential (Ecell > 0) indicates that Q◦ < K◦ and the cell reaction
shifts towards the products when the circuit is closed. Conversely, if Ecell < 0, Q◦ > K◦ and
the reaction shifts towards the reactants.

The Nernst equation can be modified in the case when the cell has a liquid junction. We define
the (liquid) junction potential as:

EJ = ϕjunction,R − ϕjunction,L (7.71)
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where the potentials refer to the phases on the right and left of the liquid junction as written in
the cell diagram. It is possible to show that, if the cell has a liquid junction, the Nernst
equation reads:

Ecell = ENernst + EJ = E◦
cell −

RT

nF
ln

(∏
i

aνii

)
+ EJ (7.72)

Junction potentials are in the order of tens of mV, a small but not negligible quantity. A
junction potential can be minimized by using a salt bridge to connect the two electrolytes. A
salt bridge typically consists of a jelly (agar gel) with a concentrated solution of a salt whose
anion and cation have approximately the same mobilities in the electrolyte solvent (usually,
KCl). The salt bridge introduces two more or less equivalent interfaces to the two electrolytes
which approximately cancel out. The use of a salt bridge brings the junction potential down to
1–2 mV.

It is possible to build an electrochemical cell where the two half-reactions are the same and the
half-cells only differ in the concentrations of the various species. This is a concentration cell
and, since the cell reaction has the same reactants and products, it has ∆rG

◦ = E◦
cell = 0. For a

concentration cell the Nernst equation simplifies to:

Ecell = −RT

nF
ln

(∏
i

aνii

)
(7.73)

If the two half-reactions are different, as in any of the examples above, the cell is known as a
chemical cell. An example of a concentration cell is:

Pt(s) | H2(g) | HCl(aq) HCl(aq) | H2(g) | Pt(s) (7.74)

7.5 Standard Electrode Potentials

Standard cell potentials (and therefore ∆rG
◦) can be calculated as the sum of contributions

from each of the electrodes (half-cells) in a galvanic cell. Measuring potentials for individual
electrodes is difficult so, in order to assign them individual potential values, we assign a fixed
potential to an arbitrarily chosen electrode, which by convention is the hydrogen electrode
(Pt|H2(g)|H+(aq)). The standard electrode potential (also standard reduction
potential, E◦) is the standard cell potential of the galvanic cell that has the hydrogen
electrode on the left (anode) and the electrode under study on the right (cathode):

Pt|H2(g)|H+(aq)|X (7.75)

Therefore, by this convention, all standard electrode potentials are reduction
potentials.

Example. The standard electrode potential of the metal/metal ion electrode Zn(s)|Zn2+(aq) is the
standard cell potential of the cell:

Pt|H2(g)|H+(aq) Zn2+(aq)|Zn (7.76)

which is E◦ = −0.76V at room temperature. The standard electrode potential has opposite sign to
the ∆rG

◦ for the corresponding cell reaction:

H2(g) + Zn2+(aq) 2 H+(aq) + Zn(s) (7.77)

and, since E◦ is negative, it indicates that this reaction is not spontaneous or, equivalently, that H2
is not a reducing agent powerful enough to reduce Zn2+.
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Table 7.1: Standard electrode potentials for a few common redox pairs at room temperature in water.
More values can be found in Bratsch, “Standard Electrode Potentials and Temperature Coefficients in
Water at 298.15K”, J. Phys. Chem. Ref. Data 18 1 (1989).

Half reaction E◦(V)
Strongly oxidizing

F2(g) + 2 e– 2 F –
(aq) 2.87

Au +
(aq) + e– Au(s) 1.69

Cl2(g) + 2 e– Cl –
(aq) 1.36

O2(g) + 4 H +
(aq) + 4 e– 2 H2O(l) 1.23

Br2(l) + 2 e– 2 Br –
(aq) 1.08

Ag +
(aq) + e– Ag(s) 0.80

Hg 2+
2(aq) + 2 e– 2 Hg(l) 0.79

Fe 3+
(aq) + e– Fe 2+

(aq) 0.77

O2(g) + 2 H2O(l) + 4 e– 4 OH –
(aq) 0.40

Cu 2+
(aq) + 2 e– Cu(s) 0.34

Hg2Cl2(s) + 2 e– 2 Hg(l) + 2 Cl –
(aq) 0.27

AgCl(s) + e– Ag(s) + Cl –
(aq) 0.22

2 H +
(aq) + e– H2(g) 0.00

Pb 2+
(aq) + 2 e– Pb(s) −0.13

Sn 2+
(aq) + 2 e– Sn(s) −0.14

PbI2(s) + 2 e– Pb(s) + 2 I –
(aq) −0.37

Fe 2+
(aq) + 2 e– Fe(s) −0.44

Zn 2+
(aq) + 2 e– Zn(s) −0.76

2 H2O(l) + 2 e– H2(g) + 2 OH –
(aq) −0.83

Al 3+
(aq) + 3 e– Al(s) −1.66

Na +
(aq) + e– Na(s) −2.71

Ca 2+
(aq) + 2 e– Ca(s) −2.87

Li +
(aq) + e– Li(s) −3.05

Strongly reducing
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A few standard electrode potentials at room temperature in water for common redox pairs are
shown in Table 7.1. Extensive tabulations of standard electrode potentials exist in textbooks
and in the specialized literature.

The standard electrode potentials in Table 7.1 can be combined to calculate the standard cell
potential for a galvanic cell. For instance, consider we have the galvanic cell with diagram:

Ag(s) | AgCl(s) | HCl(aq) | Cl2(g) | Pt(s) (7.78)

The oxidation and reduction half-reactions are:

oxidation: Ag(s) + Cl –
(aq) AgCl(s) + e– (7.79)

reduction: Cl2(g) + 2 e– Cl –
(aq) (7.80)

with an overall reaction:
2 Ag(s) + Cl2(g) 2 AgCl(s) (7.81)

The oxidation and reduction half-reactions can be related to the corresponding standard
electrode potentials by considering their combination with the standard hydrogen electrode:

Reaction A: 1
2 H2(g) + AgCl(s) Ag(s) + Cl –

(aq) + H +
(aq) with n = 1 (7.82)

Reaction B: H2(g) + Cl2(g) 2 Cl –
(aq) + 2 H +

(aq) with n = 2 (7.83)

For these reactions the standard reaction Gibbs energy is related to the corresponding standard
cell potential by (Eq. ):

∆rG
◦
A = −FE◦

cell(A) = −FE◦(AgCl/Ag) (7.84)
∆rG

◦
B = −2FE◦

cell(B) = −2FE◦(Cl2/Cl–) (7.85)

where we used the fact that the standard electrode potentials of the two redox pairs are, by
definition, equal to the standard cell potentials of these reactions. The overall reaction for this
process (Eq. 7.81) can be written as a linear combination of reactions A and B. Applying Hess’
law we have:

∆rG
◦ = ∆rG

◦
B − 2∆rG

◦
A = −2FE◦(Cl2/Cl–) + 2FE◦(AgCl/Ag) (7.86)

The cell in Eq. 7.78 has n = 2 because two electrons are transferred between anode and
cathode every step of the reaction. Therefore, the standard cell potential for this cell is:

E◦
cell = −∆rG

◦

2F
= E◦(Cl2/Cl–)− E◦(AgCl/Ag) (7.87)

so the standard cell potential of the cell in Eq. 7.78 can be written as the standard potential of
the electrode on the right (cathode) minus that of the electrode on the left (anode). In general:

E◦
cell = E◦(R)− E◦(L) (7.88)

where the “R” refers to the right electrode in the cell diagram (the cathode) and the “L” to the
left electrode (the anode). Note that the this equation does not involve the electron number (n)
of the overall reaction or the half-reactions.

Since a reaction with E◦
cell > 0 is exergonic (∆rG

◦ < 0), Eq. 7.88 indicates that a cell reaction
is more spontaneous the higher the standard potential of the cathode (right electrode) and the
lower the standard potential of the anode (left electrode). Consequently, species higher up in
Table 7.1, with very positive E◦, tend to reduce while species down in the table, with negative
E◦, tend to oxidize. If a species A is lower in the table than another species B, then A reduces
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B. For instance, zinc (E◦(Zn2+/Zn) = −0.76) reduces H+ in aqueous solution to H2
(E◦(H+/H2) = 0.00), which explains why an acidic solution in contact with metallic zinc
bubbles hydrogen. However, note that even if a reaction is thermodynamically favored it may
not happen due to slow kinetics.

Lastly, two standard electrode potentials can be combined to generate a third potential. For
instance, Table 7.1 gives the electrode potentials for the Fe2+/Fe (−0.44V) and Fe3+/Fe2+

(0.77V) pairs, corresponding to the the standard cell potentials of the cell reactions:

Reaction A: H2(g) + Fe 2+
(aq) 2 H +

(aq) + Fe(s) (7.89)

Reaction B: 1
2 H2(g) + Fe 3+

(aq) H +
(aq) + Fe 2+

(aq) (7.90)

for which:

∆rG
◦
A = −2FE◦

cell(Fe2+/Fe) (7.91)

∆rG
◦
B = −FE◦

cell(Fe3+/Fe2+) (7.92)
(7.93)

If we want, the standard electrode potential of the Fe3+/Fe pair, we need the standard cell
potential for the reaction:

3
2 H2(g) + Fe 3+

(aq) 3 H +
(aq) + Fe(s) (7.94)

which can be calculated by noting that this reaction is a combination of reaction B plus A:

E◦(Fe3+/Fe) = −∆rG
◦

3F
= −

∆rG
◦
A +∆rG

◦
B

3F
=

2

3
E◦

cell(Fe2+/Fe) +
1

3
E◦

cell(Fe3+/Fe2+) (7.95)

or, moving the electron number of the Fe3+/Fe pair (n = 3) to the left-hand side:

3× E◦(Fe3+/Fe) = 2× E◦
cell(Fe2+/Fe) + 1× E◦

cell(Fe3+/Fe2+) (7.96)

In general, if the half-reaction C with electron number nC can be written as a combination of
half-reaction A (nA) and B (nB), the corresponding standard electrode potential is:

nCE
◦(C) = nAE

◦(A) + nBE
◦(B) (7.97)

In this case, unlike what happened with the standard cell potentials, the electron numbers need
to be taken into account.

7.6 Equilibrium Constants and Reaction Properties from Cell
Potentials

The standard cell potential is directly related to the standard reaction Gibbs energy (Eq. 7.5):

E◦
cell = −∆rG

◦

nF
(7.98)

and, in turn, ∆rG
◦ is related to the equilibrium constant of the cell reaction (Eq. 6.164):

∆rG
◦ = −RT lnK◦ (7.99)

Putting the two together we get:

E◦
cell =

RT lnK◦

nF
(7.100)
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Potentiometric measurements are a very common way of obtaining accurate equilibrium
constants for chemical reactions. For instance, consider the disproportionation reaction:

2 Cu +
(aq) Cu(s) + Cu 2+

(aq) (7.101)

which is the cell reaction for the following two electrodes:

anode (L): Cu 2+
(aq) + e– Cu +

(aq) E◦(L) = 0.16V (7.102)

cathode (R): Cu +
(aq) + e– Cu(s) E◦(R) = 0.52V (7.103)

The standard cell potential for the overall reaction is:

E◦
cell = E◦(R)− E◦(L) = 0.52V − 0.16V = 0.36V (7.104)

and we have that the equilibrium constant is:

lnK◦ =
nFE◦

cell
RT

=
1× 96 485.3C× 0.36V

8.314 J/K/mol× 298.15K
= 14.01 (7.105)

This method can be applied even if the reaction under consideration is not redox. For instance,
the solubility product of AgCl, which is the equilibrium constant for the reaction:

AgCl(s) Ag +
(aq) + Cl –

(aq) (7.106)

can be calculated by noting that this is the cell reaction corresponding to the following two
half-reactions:

anode (L): Ag +
(aq) + e– Ag(s) E◦(L) = 0.80V (7.107)

cathode (R): AgCl(s) + e– Ag(s) + Cl –
(aq) E◦(R) = 0.22V (7.108)

whose standard electrode potentials can be consulted in Table 7.1. The corresponding standard
cell potential is:

Ecell = E◦(R)− E◦(L) = −0.58V (7.109)

and the solubility product at room temperature is:

lnK◦
sp =

nFE◦
cell

RT
=

1× 96 485.3C× (−0.58V)

8.314 J/K/mol× 298.15K
= −22.57 (7.110)

or K◦
sp = 1.57× 10−10.

Potentiometric measurements are also an accurate way of determining other reaction properties
besides ∆rG

◦, such as ∆rH
◦ or ∆rS

◦. For instance, the standard reaction entropy is:

∆rS
◦ = −

(
∂∆rG

◦

∂T

)
p

= nF

(
∂E◦

cell
∂T

)
p

where the temperature derivative of the standard cell potential is known as the temperature
coefficient of the galvanic cell, which can be determined experimentally by measuring E◦

cell at
different temperatures. The standard reaction enthalpy is:

∆rH
◦ = ∆rG

◦ + T∆rS
◦ = −nFE◦

cell + nFT

(
∂E◦

cell
∂T

)
p

= nF

[
T

(
∂E◦

cell
∂T

)
p

− E◦
cell

]

Potentiometric techniques are also very useful in the determination of ionic activities in
solution (for instance, the potentiometric determination of the pH using a glass electrode),
activity coefficients, as well as for quantitatively measuring the concentration of a redox active
species using potentiometric titrations.
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Appendix A

Summary of Standard States

The following table has been adapted from Levine’s Physical Chemistry, 6th edition,
Table 11.1. It specifies the standard state used by convention for various substances. Because
the activity is defined as:

ai = exp

(
µi − µ◦

i

RT

)
it is always true that:

µi = µ◦
i +RT ln ai

and the standard states in the table complete the definition of ai by setting the value of µ◦
i to

the chemical potential of some standard state of substance i chosen by convention. The
argument inside the logarithm in the last column is equal to the activity for that particular
choice of standard state.

The following limiting behaviors apply:

• In real gases or gas mixtures, ϕi → 1 and fi → pi as pi → 1, where pi = xip is the partial
pressure.

• In a solution under the Raoult’s law convention, γi,R → 1 as xi → 1 for each component i.

• In a solution under the Henry’s law convention, the activity coefficient of every
component tends to one at infinite dilution (xA → 1) regardless of the chosen scale,
including the solvent. Namely: γ∞A,H = γ∞i,H = γ∞i,b = γ∞i,c = γ∞± = 1.

For the ideal models, the following statements apply under any conditions:

• In an ideal gas or ideal gas mixture, ϕi = 1 and fi = pi = xip.

• In an ideal solution, γi,R = 1 and ai = xi for each component i.

• In an ideal-dilute solution, γA,H = γi,H = γi,b = γi,c = γ± = 1.
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